删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

秸秆还田对关中地区麦玉复种体系土壤氨排放的影响

本站小编 Free考研考试/2022-01-01

吕宏菲,
马星霞,
杨改河,,
冯永忠,
任广鑫,
李娜,
谢呈辉,
许宏伟
西北农林科技大学农学院/陕西省循环农业工程技术研究中心 杨凌 712100
基金项目: 国家自然科学基金面上项目31971859
陕西省科技统筹计划项目2016KTCL02-11

详细信息
作者简介:吕宏菲, 从事农田生态与高效耕作栽培制度方面的研究。E-mail:kanalhf2019@163.com
通讯作者:杨改河, 从事资源生态、循环农业与区域发展方面的研究。E-mail:ygh@nwsuaf.edu.cn
中图分类号:S318

计量

文章访问数:434
HTML全文浏览量:3
PDF下载量:628
被引次数:0
出版历程

收稿日期:2019-08-25
录用日期:2019-12-19
刊出日期:2020-04-01

Effect of straw returning on ammonia emissions from soil in a wheat-maize multiple cropping system in the Guanzhong region, China

LYU Hongfei,
MA Xingxia,
YANG Gaihe,,
FENG Yongzhong,
REN Guangxin,
LI Na,
XIE Chenghui,
XU Hongwei
College of Agronomy, Northwest A & F University/the Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China
Funds: the National Natural Science Foundation of China31971859
the Overall Science and Technology Program of Shaanxi Province, China2016KTCL02-11

More Information
Corresponding author:YANG Gaihe, E-mail:ygh@nwsuaf.edu.cn


摘要
HTML全文
(5)(4)
参考文献(45)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农业氨减排是雾霾治理最经济有效的方法,而农田肥料施用造成的氨排放是农业氨排放的重要部分。本研究旨在探讨冬小麦-夏玉米复种体系下土壤氨排放对秸秆还田的响应,为减少农业氨排放和控制雾霾提供理论依据。本试验于2018年6月—2019年6月在陕西关中杨凌地区,对土壤氨排放、0~40 cm土壤无机氮以及产量进行了测定分析。试验采用双因素裂区设计,主区为秸秆还田方式,设不还田(S0)、半量还田(S0.5)和全量还田(S1)3个水平;副区为施肥,设不施肥(F0)、减量施肥(F0.8)、常规施肥(F1)3个水平。结果表明:秸秆还田与施肥及两者互作对夏玉米季土壤氨累积排放量(C)有显著影响。秸秆还田对冬小麦季土壤氨累积排放量无显著影响。整个麦玉复种体系的氨累积排放量为1.31~19.26 kg·hm-2,占施肥量的2.17%~4.69%,各处理之间表现为:S0F1 > S0.5F1 > S1F1 > S0F0.8 > S0.5F0.8 > S1F0.8 > S1F0 > S0.5F0 > S0F0。在不施肥情况下,秸秆还田能增加土壤氨累积排放量,但秸秆还田配施氮肥较不还田处理显著减少土壤氨累积排放量和氨损失率,秸秆全量还田和半量还田之间的氨排放无明显差异。其中S1F0.8和S0.5F0.8处理在整个复种体系中减排效果最为显著,分别较S0F0.8处理(11.62 kg·hm-2)减排38.64%和37.35%。相比于只施氮肥,秸秆还田配施氮肥能显著减少土壤中无机氮,显著提高夏玉米产量6.23%~20.20%,冬小麦产量16.60%~28.17%。通过PCA分析发现,S1F0.8和S0.5F0.8处理是减排增产的最优组合。综合考虑土壤氨排放和作物产量,长期秸秆还田配减量施肥处理,能在保证作物高产的基础上减少土壤氨排放,可在关中地区实施。
关键词:麦玉复种/
氨排放/
产量/
减量施氮/
秸秆还田
Abstract:Reducing agricultural ammonia emissions is considered the most economical and effective method to mitigate haze pollution. Notably, ammonia emissions caused by fertilizer application in agricultural practices are a significant contributor to atmospheric ammonia. In this context, this study aimed to explore the effect of straw returning on ammonia emissions from soil using a winter wheat-summer maize multiple cropping system to provide a theoretical basis for reducing agricultural ammonia emissions to control haze pollution. The study was conducted from June 2018 to June 2019, in the Shaanxi Guanzhong region, China. The experiment used a random block design encompassing different straw returning treatments—no straw returning (S0), half straw returning (S0.5), and full straw returning (S1), as main treatments; and different fertilizer applications—no fertilization (F0), 20% fertilizer reduction (F0.8), and conventional fertilization (F1), as sub-treatments. Soil ammonia emissions, inorganic N (in 0-40 cm of soil), and crop yield, were measured for all treatments. The results showed that straw returning and fertilization, and the interaction between the two, had a significant effect on cumulative ammonia emissions (C) in the summer maize season. Conversely, straw returning had no significant effect on C in the winter wheat season. The C of the entire wheat-maize multiple cropping system was 1.31-19.26 kg·hm-2, accounting for 2.17%-4.69% of the fertilizer application. Performance among the treatments was as follows: S0F1 > S0.5F1 > S1F1 > S0F0.8 > S0.5F0.8 > S1F0.8 > S1F0 > S0.5F0 > S0F0. Notably, straw returning showed an increase in C without fertilization. However, when compared with no straw returning, straw returning combined with fertilization significantly reduced the C and the amount of ammonia loss that occurred. There was no significant difference in ammonia emissions between full and half straw return treatments. Notably, the ammonia emission reduction effect of S1F0.8 and S0.5F0.8 treatments were the most significant for the study, reducing 38.64% and 37.35% from S0F0.8 treatment, respectively. Straw returning combined with N fertilizer also demonstrated a significant reduction in NO3--N and NH4+-N in soil, while increasing the yield of summer maize by 6.23%-20.20%, and winter wheat by 16.60%-28.17%. Further to this, PCA analysis indicated that S0.5F0.8 and S1F0.8 treatments were the optimal treatment combinations of those tested for the study, providing a balance between ammonia emission reduction and increased crop production. Therefore, our findings indicate that long-term straw returning combined with fertilizer reduction could improve crop yield as well as reduce soil ammonia emissions, suggesting an agricultural practice that can assist in the reduction of agricultural ammonia emissions, and thus help mitigate haze pollution in the Guanzhong region.
Key words:Wheat-maize multiple cropping system/
Ammonia emission/
Yield/
Nitrogen fertilizer reduction/
Straw returning

HTML全文


图1试验区试验期间气温与降雨量变化
Figure1.Changes of air temperature and monthly rainfall during the experimental period in the research area


下载: 全尺寸图片幻灯片


图2不同秸秆还田和施肥处理下夏玉米(a)和冬小麦(b)土壤氨排放通量变化
S0:无秸秆还田; S0.5:半量秸秆还田; S1:全量秸秆还田; F0:不施肥; F0.8:减量施肥; F1:常规施肥。
Figure2.Changes in ammonia emission fluxes from soil of summer maize (a) and winter wheat (b) under different treatments of straws returning and fertilization
S0: no straw returning; S0.5: half straws returning; S1: all straws returning; F0: no fertilization; F0.8: fertilizer reduction; F1: conventional fertilization.


下载: 全尺寸图片幻灯片


图3不同秸秆还田和施肥处理下夏玉米(A、B)、冬小麦(C、D)土壤0~40 cm硝态氮和铵态氮含量
Figure3.NO3--N and NH4+-N contents in 0-40 cm soil of summer maize (A, B) and winter wheat (C, D) under different treatments of straws returning and fertilization


下载: 全尺寸图片幻灯片


图4不同秸秆还田和施肥处理下冬小麦和夏玉米的产量
S0:无秸秆还田; S0.5:半量秸秆还田; S1:全量秸秆还田; F0:不施肥; F0.8:减量施肥; F1:常规施肥。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure4.Yields of winter wheat and summer maize under different treatments of straws returning and fertilization
S0: no straw returning; S0.5: half straws returning; S1: all straws returning; F0: no fertilization; F0.8: fertilizer reduction; F1: conventional fertilization. Different lowercase letters mean significant differences among different treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图5秸秆还田和施肥处理与各指标之间的主成分分析
V:氨排放通量; C/Y:每生产1 t粮食所产生的氨累积排放量; Y:产量; W:冬小麦; M:夏玉米; 0-10: 0~10 cm土壤无机氮含量; 10-20: 10~20 cm土壤无机氮含量; 20-30: 20~30 cm土壤无机氮含量; 30-40: 30~40 cm土壤无机氮含量; S0:无秸秆还田; S0.5:半量秸秆还田; S1:全量秸秆还田; F0:不施肥; F0.8:减量施肥; F1:常规施肥。
Figure5.Principal component analysis of each treatment and index
V: ammonia emission flux; C/Y: accumulated ammonia emissions per ton grain production; Y: yield; W: winter wheat; M: summer maize; 0-10: inorganic nitrogen content of 0-10 cm soil layer; 10-20: inorganic nitrogen content of 10-20 cm soil layer; 20-30: inorganic nitrogen content of 20-30 cm soil layer; 30-40: inorganic nitrogen content of 30-40 cm soil layer; S0: no straw returning; S0.5: half straws returning; S1: all straws returning; F0: no fertilization; F0.8: fertilizer reduction; F1: conventional fertilization..


下载: 全尺寸图片幻灯片

表12018年6月夏玉米种植之前0~20 cm土壤基础指标
Table1.Foundation indexes of 0-20 cm soil before summer maize planting in June 2018
试验处理
Treatment
pH 有机质
Organic matter
(g·kg-1)
碱解氮
Hydrolysable N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
S0F0 8.37a 13.38e 27.10g 7.78f 94.38g 0.59h 0.67g
S0F0.8 8.12e 14.71d 38.20d 9.62d 115.11d 0.74e 0.77e
S0F1 8.30b 15.95c 39.46c 10.57bc 117.84cd 0.79d 0.79e
S0.5F0 8.15e 15.89c 32.28f 8.36e 100.35f 0.66g 0.74f
S0.5F0.8 8.23cd 18.05a 39.33cd 10.20c 119.82bc 0.81c 0.85d
S0.5F1 8.20d 17.12b 41.43b 11.36a 122.88ab 0.82b 0.87c
S1F0 8.25c 15.43cd 35.39e 8.30e 106.77e 0.68f 0.79e
S1F0.8 8.12e 18.63a 41.36b 10.76b 121.07abc 0.83ab 0.92b
S1F1 8.00f 16.75b 42.88a 11.68a 123.69a 0.84a 0.94a
同列不同小写字母表示处理间差异显著(P < 0.05)。S0:无秸秆还田; S0.5:半量秸秆还田; S1:全量秸秆还田; F0:不施肥; F0.8:减量施肥; F1:常规施肥。Different lowercase letters in the same column indicate significant differences among treatments (P < 0.05). S0: no straw returning; S0.5: half straws returning; S1: all straws returning; F0: no fertilization; F0.8: fertilizer reduction; F1: conventional fertilization.


下载: 导出CSV
表2试验期间冬小麦和夏玉米的具体施肥情况
Table2.Fertilization of winter wheat and summer maize during the experiment
作物种类
Crop type
施肥种类
Fertilizer type
常规施肥
Conventional fertilization
[kg(N)·hm-2]
减量施肥
Fertilizer reduction
[kg(N)·hm-2]
施肥方式
Fertilization method
施肥时期
Fertilization time
冬小麦
Winter wheat
尿素
Urea
172.5 138.0 基肥
Base fertilizer
播种前
Before sowing
磷酸二铵
Diammonium phosphate
65.5 52.4
夏玉米
Summer maize
尿素
Urea
172.5 138.0 追肥
Top dressing
大喇叭口期
Flare opening
尿素氮含量为≥46%, 磷酸二铵氮含量为≥17.4%。Total nitrogen contents of urea and diammonium phosphate are ≥46% and ≥17.4%, respectively.


下载: 导出CSV
表3不同秸秆还田和施肥处理下夏玉米和冬小麦生长季氨累积排放量和氨损失率
Table3.Accumulated ammonia emissions and loss rates in summer maize and winter wheat growing seasons under different treatments of straws returning and fertilization
处理
Treatment
夏玉米Summer maize 冬小麦Winter wheat 麦玉复种体系Wheat-maize multiple cropping system
氨累积排放量
Accumulated ammonia emission (kg·hm–2)
氨损失率
Loss rate (%)
氨累积排放量
Accumulated ammonia emissions (kg·hm–2)
氨损失率
Loss rate (%)
总的氨累积排放量
Total accumulated ammonia emissions (kg·hm–2)
氨损失率
Total loss rate (%)
S0F0 1.05±0.08g / 0.26±0.03c / 1.31 /
S0.5F0 1.53±0.09ef / 0.29±0.05c / 1.82 /
S1F0 1.52±0.07ef / 0.33±0.09c / 1.85 /
S0F0.8 10.10±1.15b 7.32 1.52±0.19bc 0.80 11.62 3.54
S0.5F0.8 4.14±0.78def 3.00 3.14±1.29abc 1.65 7.28 2.22
S1F0.8 4.82±0.58cde 3.50 2.31±0.25abc 1.22 7.13 2.17
S0F1 14.00±2.74a 8.14 5.26±3.43ab 2.21 19.26 4.69
S0.5F1 7.95±0.81bc 4.61 6.18±0.56a 2.60 14.13 3.48
S1F1 6.80±1.19bcd 3.94 6.08±0.61a 2.55 12.88 3.14
显著性分析(F值) Significance (F value)
S 11.76** / 0.36ns / / /
F 39.04** / 14.93** / / /
S × F 3.91* / 0.11ns / / /
S:秸秆还田; F:施肥; S0:无秸秆还田; S0.5:半量秸秆还田; S1:全量秸秆还田; F0:不施肥; F0.8:减量施肥; F1:常规施肥。同列不同小写字母表示不同处理间差异显著(P < 0.05)。**和*分别表示P < 0.01水平和P < 0.05水平影响显著; ns表示影响不显著。S: straw returning; F: fertilization; S0: no straw returning; S0.5: half straws returning; S1: all straws returning; F0: no fertilization; F0.8: fertilizer reduction; F1: conventional fertilization. Different lowercase letters in the same column mean significant differences among different treatments at P < 0.05 level. ** and * mean significant effects at P < 0.01 and P < 0.05, respectively. “ns” means no significant effect.


下载: 导出CSV
表4麦玉复种体系中不同秸秆还田和施肥处理下不同深度耕层土壤无机氮平均含量
Table4.Average contents of inorganic nitrogen in different layers of 0-40 cm soil of wheat-maize cropping system under different treatments of straws returning and fertilization?mg·kg-1
处理
Treatment
土层Soil layer (cm)
0~10 10~20 20~30 30~40
S0F0 8.96±0.07f 5.46±0.025i 4.34±0.10d 4.46±0.10e
S0.5F0 11.87±0.23e 8.47±0.13g 5.08±0.06d 5.68±0.049e
S1F0 10.31±0.07ef 6.62±0.10h 4.91±0.06d 5.43±0.19ef
S0F0.8 66.86±0.11b 28.64±0.12d 23.30±0.84a 18.53±0.63b
S0.5F0.8 61.91±0.58c 22.84±0.13e 12.07±0.20c 10.48±0.12d
S1F0.8 43.20±0.43d 15.91±0.06f 11.38±0.21c 9.66±0.05d
S0F1 74.70±1.12a 37.84±0.066b 23.09±0.34a 22.49±0.19a
S0.5F1 62.44±0.22c 34.06±0.15c 18.04±0.54b 19.01±0.23b
S1F1 76.73±0.24a 39.94±0.56a 21.80±0.39a 15.44±0.02c
S0:无秸秆还田; S0.5:半量秸秆还田; S1:全量秸秆还田; F0:不施肥; F0.8:减量施肥; F1:常规施肥。同列不同小写字母表示不同处理间差异显著(P < 0.05)。S0: no straw returning; S0.5: half straws returning; S1: all straws returning; F0: no fertilization; F0.8: fertilizer reduction; F1: conventional fertilization. Different lowercase letters in the same column mean significant differences among different treatments at P < 0.05 level.


下载: 导出CSV

参考文献(45)
[1]HARRISON R, WEBB J. A review of the effect of N fertilizer type on gaseous emissions[J]. Advances in Agronomy, 2001, 73:65-108 doi: 10.1016/S0065-2113(01)73005-2
[2]GU B J, SUTTON M A, CHANG S X, et al. Agricultural ammonia emissions contribute to China's urban air pollution[J]. Frontiers in Ecology and the Environment, 2014, 12(5):265-266 doi: 10.1890/14.WB.007
[3]WANG G, ZHANG R, GOMEZ M E, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48):13630-13635 doi: 10.1073/pnas.1616540113
[4]邓明君, 罗文兵.中国农业氨排放的时空演变趋势与减排潜力分析[J].中国生态农业学报, 2018, 26(9):1257-1268 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0901&flag=1
DENG M J, LUO W B. Space-time evolution of China's agricultural ammonia emission and emission reduction potential[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9):1257-1268 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0901&flag=1
[5]PINDER R W, ADAMS P J, PANDIS S N. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States[J]. Environmental Science & Technology, 2007, 41(2):380-386 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f5cb8aa8f99f9c69aad2bbd7698451f
[6]DERWENT R, WITHAM C, REDINGTON A, et al. Particulate matter at a rural location in southern England during 2006:Model sensitivities to precursor emissions[J]. Atmospheric Environment, 2009, 43(3):689-696 doi: 10.1016/j.atmosenv.2008.09.077
[7]BESSAGNET B, BEAUCHAMP M, GUERREIRO C, et al. Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards?[J]. Environmental Science & Policy, 2014, 44:149-163 http://cn.bing.com/academic/profile?id=302f68eedab935242c3f875870c1bd43&encoded=0&v=paper_preview&mkt=zh-cn
[8]董宇, 马晶, 张涛, 等.秸秆利用途径的分析比较[J].中国农学通报, 2010, 26(19):327-332 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201019070
DONG Y, MA J, ZHANG T, et al. Analysis and comparison of straw utilization[J]. Chinese Agricultural Science Bulletin, 2010, 26(19):327-332 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201019070
[9]马骁轩, 蔡红珍, 付鹏, 等.中国农业固体废弃物秸秆的资源化处置途径分析[J].生态环境学报, 2016, 25(1):168-174 http://d.old.wanfangdata.com.cn/Periodical/tryhj201601025
MA X X, CAI H Z, FU P, et al. Analysis of the reutilization methods for agricultural waste of straw in China[J]. Ecology and Environmental Sciences, 2016, 25(1):168-174 http://d.old.wanfangdata.com.cn/Periodical/tryhj201601025
[10]PETERSEN V, MARKFOGED R, HAFNER S, et al. A new slurry pH model accounting for effects of ammonia and carbon dioxide volatilization on solution speciation[J]. Nutrient Cycling in Agroecosystems, 2014, 100(2):189-204 doi: 10.1007/s10705-014-9637-6
[11]董文旭, 吴电明, 胡春胜, 等.华北山前平原农田氨挥发速率与调控研究[J].中国生态农业学报, 2011, 19(5):1115-1121 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110521&flag=1
DONG W X, WU D M, HU C S, et al. Ammonia volatilization and control mechanisms in the piedmont of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1115-1121 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110521&flag=1
[12]汪军, 王德建, 张刚, 等.麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较[J].环境科学, 2013, 34(1):27-33 http://d.old.wanfangdata.com.cn/Periodical/hjkx201301005
WANG J, WANG D J, ZHANG G, et al. Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region[J]. Environmental Science, 2013, 34(1):27-33 http://d.old.wanfangdata.com.cn/Periodical/hjkx201301005
[13]PELSTER D E, WATT D, STRACHAN I B, et al. Effects of initial soil moisture, clod size, and clay content on ammonia volatilization after subsurface band application of urea[J]. Journal of Environmental Quality, 2019, 48(3):549-558 doi: 10.2134/jeq2018.09.0344
[14]FAN X H, LI Y C, ALVA A K. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers[J]. Communications in Soil Science and Plant Analysis, 2011, 42(10):1111-1122 doi: 10.1080/00103624.2011.566957
[15]上官宇先, 师日鹏, 李娜, 等.垄作覆膜条件下田间氨挥发及影响因素[J].环境科学, 2012, 33(6):1987-1993 http://d.old.wanfangdata.com.cn/Periodical/hjkx201206036
SHANGGUAN Y X, SHI R P, LI N, et al. Factors influencing ammonia volatilization in a winter wheat field with plastic film mulched ridges and unmulched furrows[J]. Environmental Science, 2012, 33(6):1987-1993 http://d.old.wanfangdata.com.cn/Periodical/hjkx201206036
[16]李祯, 史海滨, 李仙岳, 等.不同水氮运筹模式对田间土壤氨挥发及春玉米籽粒产量的影响[J].农业环境科学学报, 2017, 36(4):799-807 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201704026
LI Z, SHI H B, LI X Y, et al. Ammonia volatilization in soil and grain yield of the spring maize under different water-nitrogen management regimes[J]. Journal of Agro-Environment Science, 2017, 36(4):799-807 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201704026
[17]雷杨莉, 王林权, 薛亮, 等.交替灌溉施肥对夏玉米土壤氨挥发的影响[J].农业工程学报, 2009, 25(4):41-46 doi: 10.3321/j.issn:1007-4333.2009.04.007
LEI Y L, WANG L Q, XUE L, et al. Effect of alternative irrigation and fertilization on soil ammonia volatilization of summer maize[J]. Transactions of the CSAE, 2009, 25(4):41-46 doi: 10.3321/j.issn:1007-4333.2009.04.007
[18]ZHANG Y Y, LIU J F, MU Y J, et al. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain[J]. Atmospheric Environment, 2011, 45(17):2956-2961 doi: 10.1016/j.atmosenv.2010.10.052
[19]王欢, 郑西来, 辛佳.土壤氨挥发的影响因素及其与脲酶活性的关系研究[J].安徽农学通报, 2016, 22(9):74-79 doi: 10.3969/j.issn.1007-7731.2016.09.037
WANG H, ZHENG X L, XIN J. Influencing factors on ammonia volatilization and its relations with urease activity[J]. Anhui Agricultural Science Bulletin, 2016, 22(9):74-79 doi: 10.3969/j.issn.1007-7731.2016.09.037
[20]董文旭, 胡春胜, 陈素英, 等.保护性耕作对冬小麦-夏玉米农田氮肥氨挥发损失的影响[J].中国农业科学, 2013, 46(11):2278-2284 doi: 10.3864/j.issn.0578-1752.2013.11.012
DONG W X, HU C S, CHEN S Y, et al. Effect of conservation tillage on ammonia volatilization from nitrogen fertilizer in Winter Wheat-Summer Maize Cropping System[J]. Scientia Agricultura Sinica, 2013, 46(11):2278-2284 doi: 10.3864/j.issn.0578-1752.2013.11.012
[21]李宗新, 王庆成, 刘开昌, 等.不同施肥模式下夏玉米田间土壤氨挥发规律[J].生态学报, 2009, 29(1):307-314 doi: 10.3321/j.issn:1000-0933.2009.01.037
LI Z X, WANG Q C, LIU K C, et al. Law of field soil ammonia volatilization in summer maize under different fertilizer patterns[J]. Acta Ecologica Sinica, 2009, 29(1):307-314 doi: 10.3321/j.issn:1000-0933.2009.01.037
[22]胡春胜, 董文旭, 张玉铭, 等.华北山前平原农田生态系统氮通量与调控[J].中国生态农业学报, 2011, 19(5):997-1003 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110503&flag=1
HU C S, DONG W X, ZHANG Y M, et al. Nitrogen flux and its manipulation in the cropland ecosystem of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):997-1003 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110503&flag=1
[23]徐聪.华北平原长期氮肥施用和秸秆还田下温室气体排放及氮素损失特征[D].北京: 中国农业大学, 2018: 64-66 http://cdmd.cnki.com.cn/Article/CDMD-10019-1018065412.htm
XU C. Characteristics of greenhouse gas emissions and nitrogen losses under long-term nitrogen fertilization and straw incorporation in the North China Plain[D]. Beijing: China Agricultural University, 2018: 64-66 http://cdmd.cnki.com.cn/Article/CDMD-10019-1018065412.htm
[24]杨弘.秸秆还田对农田棕壤氨挥发和氧化亚氮排放的影响[D].沈阳: 沈阳农业大学, 2016: 23-24 http://cdmd.cnki.com.cn/Article/CDMD-10157-1016143367.htm
YANG H. Effect of maize stalk retention on nitrous oxide emission and ammonia volatilization in arable brown soil[D]. Shenyang: Shenyang Agricultural University, 2016: 23-24 http://cdmd.cnki.com.cn/Article/CDMD-10157-1016143367.htm
[25]巨晓棠, 刘学军, 邹国元, 等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学, 2002, 35(12):1493-1499 doi: 10.3321/j.issn:0578-1752.2002.12.011
JU X T, LIU X J, ZOU G Y, et al. Evaluation of nitrogen loss way in winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2002, 35(12):1493-1499 doi: 10.3321/j.issn:0578-1752.2002.12.011
[26]山楠.京郊小麦-玉米轮作体系氮素利用与损失研究[D].保定: 河北农业大学, 2014: 22-23 http://cdmd.cnki.com.cn/article/cdmd-10086-1015515542.htm
SHAN N. Nitrogen utilization and loss in winter wheat-summer maize rotation system of Beijing suburb[D]. Baoding: Agricultural University of Hebei, 2014: 22-23 http://cdmd.cnki.com.cn/article/cdmd-10086-1015515542.htm
[27]曹欢欢.旱地夏玉米-冬小麦轮作体系尿素氨挥发研究[D].咸阳: 西北农林科技大学, 2018: 28-29
CAO H H. Ammonia volatilization of urea from summer maize-winter wheat rotation system in dryland[D]. Xianyang: Northwest A & F University, 2018: 28-29
[28]王朝辉, 刘学军, 巨晓棠, 等.田间土壤氨挥发的原位测定——通气法[J].植物营养与肥料学报, 2002, 8(2):205-209 doi: 10.3321/j.issn:1008-505X.2002.02.014
WANG C H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil:Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2):205-209 doi: 10.3321/j.issn:1008-505X.2002.02.014
[29]杨淑莉, 朱安宁, 张佳宝, 等.不同施氮量和施氮方式下田间氨挥发损失及其影响因素[J].干旱区研究, 2010, 27(3):415-421 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201003016
YANG S L, ZHU A N, ZHANG J B, et al. Ammonia volatilization loss and its affecting factors under different amounts and ways of N application in field[J]. Arid Zone Research, 2010, 27(3):415-421 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201003016
[30]DE RUIJTER F J, HUIJSMANS J F M, RUTGERS B. Ammonia volatilization from crop residues and frozen green manure crops[J]. Atmospheric Environment, 2010, 44(28):3362-3368 doi: 10.1016/j.atmosenv.2010.06.019
[31]张亚丽, 张娟, 沈其荣, 等.秸秆生物有机肥的施用对土壤供氮能力的影响[J].应用生态学报, 2002, 13(12):1575-1578 doi: 10.3321/j.issn:1001-9332.2002.12.014
ZHANG Y L, ZHANG J, SHEN Q R, et al. Effect of combined application of bioorganic manure and inorganic nitrogen fertilizer on soil nitrogen supplying characteristics[J]. Chinese Journal of Applied Ecology, 2002, 13(12):1575-1578 doi: 10.3321/j.issn:1001-9332.2002.12.014
[32]刘兰清.秸秆还田和氮肥对土壤理化性质及作物产量的影响研究[D].咸阳: 西北农林科技大学, 2018: 26-27
LIU L Q. A study of effects of straw mulching and nitrogen fertilizer on soil physicochemical properties and crop yield[D]. Xianyang: Northwest A & F University, 2018: 26-27
[33]朱兆良.中国土壤氮素研究[J].土壤学报, 2008, 45(5):778-783 doi: 10.3321/j.issn:0564-3929.2008.05.003
ZHU Z L. Study on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5):778-783 doi: 10.3321/j.issn:0564-3929.2008.05.003
[34]Muhammad W, Vaughan S M, Dalal R C, et al. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol[J]. Biology and Fertility of Soils, 2011, 47(1):15-23 doi: 10.1007/s00374-010-0497-1
[35]QIU S J, JU X T, LI L, et al. Nitrate transformation and N2O emission in a typical intensively managed calcareous fluvaquent soil:A 15-nitrogen tracer incubation study[J]. Communications in Soil Science and Plant Analysis, 2015, 46(14):1763-1777 doi: 10.1080/00103624.2015.1044112
[36]GILL J S, BIJAY-SINGH, KHIND C S, et al. Efficiency of N-(n-butyl) thiophosphoric triamide in retarding hydrolysis of urea and ammonia volatilization losses in a flooded sandy loam soil amended with organic materials[J]. Nutrient Cycling in Agroecosystems, 1999, 53(3):203-207 doi: 10.1023/A:1009702707389
[37]张四海, 曹志平, 胡婵娟.添加秸秆碳源对土壤微生物生物量和原生动物丰富度的影响[J].中国生态农业学报, 2011, 19(6):1283-1288 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110609&flag=1
ZHANG S H, CAO Z P, HU C J. Effect of added straw carbon on soil microbe and protozoa abundance[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6):1283-1288 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110609&flag=1
[38]HENRIKSEN T M, BRELAND T A. Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil[J]. Biology and Fertility of Soils, 2002, 35(1):41-48 doi: 10.1007/s00374-001-0438-0
[39]戴志刚, 鲁剑巍, 李小坤, 等.不同作物还田秸秆的养分释放特征试验[J].农业工程学报, 2010, 26(6):272-276 doi: 10.3969/j.issn.1002-6819.2010.06.047
DAI Z G, LU J W, LI X K, et al. Nutrient release characteristic of different crop straws manure[J]. Transactions of the CSAE, 2010, 26(6):272-276 doi: 10.3969/j.issn.1002-6819.2010.06.047
[40]申丽霞, 王璞, 兰林旺, 等.施氮对夏玉米碳氮代谢及穗粒形成的影响[J].植物营养与肥料学报, 2007, 13(6):1074-1079 doi: 10.3321/j.issn:1008-505x.2007.06.014
SHEN L X, WANG P, LAN L W, et al. Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6):1074-1079 doi: 10.3321/j.issn:1008-505x.2007.06.014
[41]林治安, 赵秉强, 袁亮, 等.长期定位施肥对土壤养分与作物产量的影响[J].中国农业科学, 2009, 42(8):2809-2819 doi: 10.3864/j.issn.0578-1752.2009.08.021
LIN Z A, ZHAO B Q, YUAN L, et al. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield[J]. Scientia Agricultura Sinica, 2009, 42(8):2809-2819 doi: 10.3864/j.issn.0578-1752.2009.08.021
[42]程曼, 解文艳, 杨振兴, 等.黄土旱塬长期秸秆还田对土壤养分、酶活性及玉米产量的影响[J].中国生态农业学报(中英文), 2019, 27(10):1528-1536 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0103&flag=1
CHENG M, XIE W Y, YANG Z X, et al. Effects of long-term straw return on corn yield, soil nutrient contents and enzyme activities in dryland of the Loess Plateau, China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10):1528-1536 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0103&flag=1
[43]杨宪龙, 路永莉, 同延安, 等.长期施氮和秸秆还田对小麦-玉米轮作体系土壤氮素平衡的影响[J].植物营养与肥料学报, 2013, 19(1):65-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201301008
YANG X L, LU Y L, TONG Y A, et al. Effects of long-term N application and straw returning on N budget under wheat-maize rotation system[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1):65-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201301008
[44]于舜章, 陈雨海, 周勋波, 等.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报, 2004, 18(6):175-178 doi: 10.3321/j.issn:1009-2242.2004.06.043
YU S Z, CHEN Y H, ZHOU X B, et al. Effect of straw-mulch during wheat stage on soil water dynamic changes and yield of summer maize[J]. Journal of Soil and Water Conservation, 2004, 18(6):175-178 doi: 10.3321/j.issn:1009-2242.2004.06.043
[45]杨晨璐, 刘兰清, 王维钰, 等.麦玉复种体系下秸秆还田与施氮对作物水氮利用及产量的效应研究[J].中国农业科学, 2018, 51(9):1664-1680 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201809005
YANG C L, LIU L Q, WANG W Y, et al. Effects of the application of straw returning and nitrogen fertilizer on crop yields, water and nitrogen utilization under wheat-maize multiple cropping system[J]. Scientia Agricultura Sinica, 2018, 51(9):1664-1680 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201809005

相关话题/土壤 作物 农田 农业 图片