删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

转<i>Bt</i>基因棉秸秆还田利用对土壤肥力的影响

本站小编 Free考研考试/2022-01-01

张富丽,
尹全,
毛建霏,
郭灵安,
雷绍荣,
刘文娟,
罗苹,
王东,
宋君,
杨晓凤,
四川省农业科学院分析测试中心 成都 610066
基金项目: 四川省农业科学院论文基金项目2016LWJJ-010
四川省创新能力提升工程公益深化项目2016GYSH-032

详细信息
作者简介:张富丽, 长期从事转基因成分检测与环境影响评价分析研究。E-mail:zhang_fannie@163.com
通讯作者:杨晓凤, 主要研究方向为农产品质量控制及安全评价。E-mail:yangxiaofeng_cd@sina.com
中图分类号:S1

计量

文章访问数:442
HTML全文浏览量:0
PDF下载量:760
被引次数:0
出版历程

收稿日期:2019-12-19
录用日期:2020-02-04
刊出日期:2020-05-01

Effects of Bacillus thuringiensis transgenic cotton straw returning to field on soil fertility

ZHANG Fuli,
YIN Quan,
MAO Jianfei,
GUO Ling'an,
LEI Shaorong,
LIU Wenjuan,
LUO Ping,
WANG Dong,
SONG Jun,
YANG Xiaofeng,
Analysis and Determination Center, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
Funds: the Dissertation Fund of Sichuan Academy of Agricultural Sciences2016LWJJ-010
the Special Funds of Ability Promotion from Sichuan Provincial Finance2016GYSH-032

More Information
Corresponding author:YANG Xiaofeng, E-mail:yangxiaofeng_cd@sina.com


摘要
HTML全文
(0)(7)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:随着转基因的快速发展,大量转Bt棉秸秆的合理利用和处理是不可忽视的重要课题之一。为明确Bt棉秸秆还田利用的可行性和安全性,本研究以不同抗虫转Bt基因棉和常规棉花‘泗棉3号’为研究材料,在分别种植1、2年后将秸秆机械粉碎后原位还田,测试土壤中Bt蛋白残留量、土壤酶活性及养分含量的变化,分析Bt棉秸秆原位还田对土壤肥力特性的影响。研究结果表明,秸秆还田40 d后,Bt棉样地土壤中Bt残留蛋白检测值较低,均与非转基因棉样地无显著性差异。棉秸秆还田后,土壤脲酶、蔗糖酶、蛋白酶、多酚氧化酶、过氧化氢酶、碱性磷酸酶活性皆较秸秆还田前增加,但土壤纤维素酶活性较之前降低。棉秸秆还田使土壤中有机质、有效磷、碱解氮、速效钾和全氮等养分含量及pH明显增加,而Bt抗虫棉与常规棉秸秆还田后对土壤肥力的影响不存在显著差异。对土壤综合肥力指数评价结果表明,秸秆还田对土壤肥力提升与Bt棉抗虫水平无关,土壤肥力指数在两年间由Ⅲ级水平上升至Ⅱ级水平。综上,Bt棉花秸秆还田不会造成土壤综合肥力降低,相反能有效提升土壤肥力;同时还田利用措施可对转基因植株有效灭活,与转基因植物秸秆利用和无害化处理要求相契合。生产中用于Bt转基因棉花秸秆利用和处理在一定程度上是安全可行的。
关键词:Bt基因棉/
秸秆还田/
转基因植物/
Bt蛋白残留/
土壤肥力
Abstract:With the rapid development of genetically modified organisms, how to use and deal with a large amount of Bacillus thuringiensis (Bt) transgenic cotton straw is an important issue. To study and clarify the feasibility and safety of straw incorporation of transgenic Bt cotton into the field, four kinds of Bt cotton with different levels of insect resistance and one non-transgenic conventional cotton (Simian no. 3) were analyzed. After one or two years of planting, all the cotton straws were mechanically crushed and returned to the field in situ. The content of residual Bt protein, activities of several soil enzymes, and nutrient contents in soil were detected and the changes were further analyzed. The effects of Bt cotton straw returning on nutrient characteristics and fertility of soil were analyzed. The Bt protein residues in soils were very few and almost undetectable after 40 days of straw recycling of transgenic Bt cotton with different insect resistance levels, and there was no significant differences between the transgenic field plots and non-transgenic ones. After cotton straws were returned into the field, the activities of urease, sucrase, protease, polyphenol oxidase, catalase, and alkaline phosphatase in soil obviously increased, while the activity of cellulose did not increase. The activity of soil cellulase was lower than that before cotton planting. The amounts of organic matter, available phosphorus, available nitrogen, available potassium, and total nitrogen in soil increased remarkably both for the first year and for the second year of cotton planting, and so did the pH value. Similarly, there were not any significant differences in variations of all nutrient content between Bt transgenic treatments and non-transgenic ones. The soil comprehensive fertility index resulted by straw recycling was calculated and the effect on the fertility suitability was evaluated. The fertility index rose from level Ⅲ to level Ⅱ in two years, which was not related to the insect resistance level of Bt transgenic cotton. The soil fertility was not adversely decreased but increased, in fact, by straw returning treatment of Bt cottons. Returning Bt cotton straw to the field could effectively improve the soil fertility index. In addition, this straw recycling scheme could effectively kill transgenic plants, and would meet the disposal requirements of transgenic plants. The collective data confirmed that returning treatment, to a certain extent, should be feasible and safe for dealing with mass residues of Bt transgenic cotton in practice.
Key words:Bacillus thuringiensis transgenic (Bt) cotton/
Straw returning/
Transgenic plant/
Residual Bt protein/
Soil fertility

HTML全文

表1Bt基因棉秸秆还田前后土壤养分含量特征性统计
Table1.Descriptive statistics of soil nutrients contents before and after recycling of transgenic Bt cotton straw
土层
Soil layer
指标
Soil index
取样时期
Sampling period
均值±标准差
Mean±S.D.
变幅
Amplitude
变异系数
Variation coefficient (%)
耕作层
Plough layer
有机质
Organic matter
(g?kg–1)
0 17.83±1.54a 14.43~20.69 8.64
22.27±1.14b 20.50~23.98 5.12
29.8±0.92c 28.58~31.34 3.09
有效磷
Available P
(mg·kg–1)
0 9.09±5.19a 2.30~17.8 57.10
54.13±4.02b 49.61~64.41 7.43
82.21±3.68c 76.52~86.70 4.48
速效钾
Available K
(mg·kg–1)
0 63.42±13.79a 46.03~99.00 21.74
100.83±8.32b 86.44~113.94 8.25
136.77±10.32c 119.99~150.88 7.55
碱解氮
Alkali-hydrolysis N
(mg·kg–1)
0 104.64±6.57a 93.19~114.97 6.28
118.87±8.00b 103.41~132.02 6.73
130.83±5.73c 118.66~139.63 4.38
全氮
Total N
(g·kg–1)
0 1.02±0.05a 0.94~1.09 4.90
1.16±0.07b 1.03~1.26 6.03
1.30±0.08c 1.12~1.45 6.15
耕作层
Plough layer
pH值
pH value
0 5.98±0.36a 5.56~6.64 6.02
6.31±0.32b 5.73~6.91 5.07
6.70±0.25c 6.25~7.05 3.73
犁底层
Plow pan
有机质
Organic matter
(g?kg–1)
0 23.01±1.57a 20.55~26.75 6.85
24.80±1.45b 22.05~27.82 5.83
27.94±2.59c 24.05~31.64 9.27
有效磷
Available P
(mg·kg–1)
0 7.61±2.79a 4.25~12.36 36.70
20.13±1.96b 17.22~24.55 9.72
25.39±3.64c 20.23~32.19 14.34
速效钾
Available K
(mg·kg–1)
0 53.18±6.42a 45.23~69.28 12.07
63.65±8.39b 52.86~79.85 13.18
76.54±8.91c 59.67~95.89 11.64
碱解氮
Alkali-hydrolysis N
(mg·kg–1)
0 138.90±13.82a 109.20~156.25 9.95
156.20±14.08b 125.79~181.46 9.01
164.80±13.85c 138.31~195.52 8.40
全氮
Total N
(g·kg–1)
0 1.49±0.08a 1.33~1.61 5.57
1.66±0.08b 1.56~1.85 5.02
1.76±0.11c 1.56~2.01 6.36
pH 0 6.07±0.23a 5.59~6.45 3.80
6.39±0.20b 5.95~6.63 3.19
6.58±0.27c 6.02~7.03 4.13
取样时期0、Ⅰ和Ⅱ分别指棉花种植前1年、棉花种植1年秸秆还田后和棉花种植2年秸秆还田后。The sampling periods 0, Ⅰ and Ⅱ are one year before planting cotton, after straw incorporation of the first year and the second year of cotton planting, respectively.


下载: 导出CSV
表2不同抗虫性转基因棉还田40 d后土壤Bt蛋白残留量
Table2.Contents of residual Bt protein in soil after 40 days of straw incorporation of transgenic Bt cotton with different insect resistance levels
土层
Soil layer
抗虫性
Insect resistance level
棉花种植前
Before planting cotton
棉花种植1年秸秆还田后
After straw incorporation of the first year of cotton planting
棉花种植2年秸秆还田后
After straw incorporation of the second year of cotton planting
Bt蛋白量
Bt protein content
(μg·kg–1)
与Cn间差异(P值)
Significance of difference with Cn
(P value)
Bt蛋白量
Bt protein content
(μg·kg–1)
与Cn间差异(P值)
Significance of difference with Cn
(P value)
Bt蛋白量
Bt protein content
(μg·kg–1)
与Cn间差异(P值)
Significance of difference with Cn
(P value)
耕作层
Plough layer
H 1.220±0.020 0.837 1.853±0.073 0.336 1.806±0.113 0.457
M 1.180±0.009 0.904 1.590±0.139 0.594 1.718±0.196 0.309
L 1.196±0.083 0.997 1.642±0.317 0.812 1.760±0.042 0.329
Cp 1.219±0.069 0.908 1.600±0.236 0.634 2.126±0.063 0.367
Cn 1.242±0.005 / 1.683±0.039 / 2.117±0.097 /
犁底层
Plow pan
H 1.167±0.018 0.858 1.762±0.245 0.874 1.990±0.444 0.854
M 1.189±0.062 0.932 1.79±0.002 0.779 1.789±0.035 0.494
L 1.164±0.059 0.848 1.44±0.035 0.223 2.132±0.385 0.426
Cp 1.180±0.052 0.900 1.661±0.035 0.782 1.987±0.051 0.866
Cn 1.209±0.029 / 1.725±0.075 / 1.947±0.012 /
H、M、L代表抗虫性水平分别为高、中、低的非商业化转Bt基因棉花品种; Cp是商业化转Bt基因棉‘GK19’, Cn是非转基因棉品种‘泗棉3号’。H, M and L represent non-commercial Bt cotton varieties with high, medium and low insect resistance levels, respectively. Cp is the commercial Bt cotton variety ‘GK19’, Cn is the non-transgenic cotton variety ‘Simian No. 3’.


下载: 导出CSV
表3不同抗虫性转Bt基因棉花秸秆还田对土壤酶活性的影响
Table3.Effect of straw incorporation of transgenic Bt cotton with different insect resistance levels on soil enzymes activities
土壤酶
Soil enzyme
抗虫性
Insect resistance level
棉花种植前1年
One year before planting cotton
棉花种植1年秸秆还田后
After straw incorporation of the first year of cotton planting
棉花种植2年秸秆还田后
After straw incorporation of the second year of cotton planting
酶活性
Enzyme activity
变化幅度
Change scale (%)
酶活性
Enzyme activity
变化幅度
Change scale (%)
脲酶
Urease
(IU·g–1)
H 186.82±5.10a 198.53±5.17ac +6.27 208.66±14.74bc +11.62
M 157.13±5.46a 190.04±6.54bc +21.05 197.13±5.98c +25.58
L 150.88±8.34a 191.00±8.97b +26.71 213.25±15.51c +41.29
Cp 175.08±1.15a 187.79±2.11b +7.27 219.13±5.00c +25.16
Cn 144.74±3.50a 158.25±5.02b +9.34 180.75±1.90c +24.93
蔗糖酶
Sucrase
(U·g–1)
H 147.64±6.18a 161.49±3.91b +9.52 172.15±9.16c +16.88
M 133.30±5.85a 162.58±8.14b +22.19 174.52±5.22c +31.20
L 132.52±6.13a 155.85±2.08b +17.73 166.92±8.89c +26.20
Cp 131.93±2.30a 163.26±5.28bc +23.74 168.16±6.71c +27.44
Cn 131.93±2.30a 146.87±9.55b +11.32 162.71±2.94c +23.35
蛋白酶
Protease
(IU·g–1)
H 19.25±1.45a 22.33±0.67bc +16.59 23.87±0.50c +24.53
M 14.01±0.12a 23.23±0.84bc +65.82 24.77±0.40c +76.83
L 15.82±1.08a 21.38±0.75b +35.81 23.90±1.42c +51.85
Cp 17.87±2.73a 20.64±1.73b +16.55 24.28±0.68c +37.72
Cn 17.87±2.73a 20.39±0.58b +15.70 23.00±0.47c +30.57
多酚氧化酶
Polyphenol oxidase
(IU·g–1)
H 47.12±4.74a 65.63±5.39b +40.79 78.29±7.07c +67.22
M 30.45±4.13a 64.52±1.17b +114.77 71.06±2.49c +135.78
L 36.95±4.80a 60.87±1.78b +66.73 72.28±6.33c +96.37
Cp 45.62±2.75a 71.33±1.22b +56.64 80.11±0.30c +76.07
Cn 45.62±2.75a 62.42±1.65b +37.30 72.34±2.04c +59.08
纤维素酶
Cellulose
(U·g–1)
H 22.58±0.74a 16.55±1.41b -26.57 12.47±1.36c -44.88
M 21.53±0.10a 18.80±1.40b -12.69 16.26±1.61c -24.52
L 21.65±0.59a 19.89±0.75a -8.02 12.46±1.87b -42.59
Cp 21.34±1.18a 17.54±1.88b -17.36 13.36±0.54c -37.16
Cn 21.34±1.18a 16.94±1.23b -20.47 13.22±0.60c -37.86
过氧化氢酶
Catalase
(IU·g–1)
H 31.68±3.04a 37.47±0.65b +19.08 41.64±1.62c +32.58
M 31.05±1.69a 37.23±2.95b +20.14 44.77±4.68c +43.98
L 31.22±1.57a 37.17±2.10bc +19.42 39.86±2.56c +28.17
Cp 31.29±1.49a 39.64±0.75bc +26.82 42.17±0.73c +34.93
Cn 31.29±1.49a 39.70±1.53bc +26.98 42.01±0.73c +34.54
碱性磷酸酶
Alkaline Phosphatase
(IU·g–1)
H 8.27±0.81a 9.04±0.58a +9.52 11.54±1.01b +40.99
M 6.25±0.14a 8.61±0.58b +38.05 11.18±1.19c +78.82
L 5.42±0.41a 6.54±0.50b +20.84 9.50±0.21c +76.10
Cp 7.00±0.02a 8.95±0.03bc +27.89 9.71±0.45c +38.71
Cn 7.00±0.02a 8.03±0.12b +14.66 9.69±0.40c +38.52
H、M、L代表抗虫性水平分别为高、中、低的非商业化转Bt基因棉花品种; Cp是商业化转Bt基因棉‘GK19’, Cn是非转基因棉品种‘泗棉3号’。同行不同小写字母表示3个时期间差异显著(P < 0.05)。H, M and L represent non-commercial Bt cotton varieties with high, medium and low insect resistance levels, respectively. Cp is the commercial Bt cotton variety ‘GK19’, Cn is the non-transgenic cotton variety ‘Simian No. 3’. Different lowercase letters in the same line mean significant differences among three periods at P < 0.05 level.


下载: 导出CSV
表4Bt基因棉秸秆还田后不同时间土壤酶活变化与棉花抗虫性相关性分析
Table4.Spearman correlation analysis between change of soil enzymes activities at different times after straw incorporation of transgenic Bt cotton and insect-resistance of transgenic cotton

Enzyme
棉花种植1年秸秆还田后
After straw incorporation of the first year of cotton planting
棉花种植2年秸秆还田后
After straw incorporation of the second year of cotton planting
r 显著性Significance r 显著性Significance
脲酶Urease 0.083 ns 0.436 ns
蔗糖酶Sucrase 0.131 ns 0.076 ns
蛋白酶Protease 0.316 ns 0.142 ns
多酚氧化酶Polyphenol oxidase 0.218 ns 0.404 ns
纤维素酶Cellulose 0.109 ns 0.142 ns
过氧化氢酶Catalase 0.273 ns 0.131 ns
碱性磷酸酶Alkaline Phosphatase 0.120 ns 0.175 ns
ns表示相关性不显著。“ns” means not significant correlation.


下载: 导出CSV
表5土壤养分评价指标分级标准
Table5.Grading and evaluation criteria of soil nutrients contents
分值
Score
有机质
Organic matter
(g·kg–1)
碱解氮
Alkali-hydrolysis N
(mg·kg–1)
有效磷
Available P
(mg·kg–1)
速效钾
Available K
(mg·kg–1)
全氮
Total N
(g·kg–1)
pH
100 ≥40 ≥150 ≥40.0 ≥200 ≥2.0 6.0~7.5
90 30~40 120~150 20~40 150~200 1.5~2.0 5.5~6.0; 7.5~8.0
80 20~30 90~120 10~20 100~150 1.0~1.5 5.0~5.5; 8.0~9.0
70 10~20 60~90 5~10 50~100 0.75~1.0 4.5~5.0; 9.0~9.5
60 5~10 30~60 3~5 30~50 0.5~0.75 4.5~5.0
50 < 10 < 30 < 3 < 30 < 0.5 < 4.5


下载: 导出CSV
表6土壤养分指标权重及其隶属函数类型和阈值
Table6.Weight values, distribution types and infection points of soil nutrient indexes
指标
Index
函数类型
Distribution type
转折点值Infection point 权重
Weight value
X1 X2 X3 X4
pH 抛物线Parabola type 4.5 6.0 7.5 9.0 0.370
有机质Organic matter (g·kg–1) S形S type 10 40 0.247
碱解氮Alkali-hydrolysis N (mg·kg–1) S形S type 30 150 0.156
速效磷Available P (mg·kg–1) S形S type 3 40 0.095
速效钾Available K (mg·kg–1) S形S type 30 200 0.087
全氮Total N (g·kg–1) S形S type 0.5 2.0 0.046


下载: 导出CSV
表7不同抗虫性转Bt基因棉花秸秆还田后土壤养分含量及肥力指数的变化
Table7.Changes of soil nutrients contents contents and fertility index after straw incorporation of transgenic Bt cotton with different insect resistance levels



参考文献(26)
[1]ISAAA. Global status of Commercialized Biotech/GM Crops in 2018: Biotech Crops Continue to Help Meet the Challenges of Increased Population and Climate Change[R]. ISAAA Brief 54, Ithaca, NY: ISAAA.
[2]卢宝荣.以科学知识和事实增进公众对转基因生物及其安全性的了解[J].植物生理学报, 2013, 49(7):615-625 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201307005
LU B R. Increase public understanding on genetically modified organisms and biosafety issues based on scientific knowledge and facts[J]. Plant Physiology Communications, 2013, 49(7):615-625 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201307005
[3]潘剑玲, 代万安, 尚占环, 等.秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J].中国生态农业学报, 2013, 21(5):526-535 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201305002
PAN J L, DAI W A, SHANG Z H, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5):526-535 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201305002
[4]赵其国, 钱海燕.低碳经济与农业发展思考[J].生态环境学报, 2009, 18(5):1609-1614 http://d.old.wanfangdata.com.cn/Periodical/tryhj200905001
ZHAO Q G, QIAN H Y. Low carbon economy and thinking of agricultural development[J]. Ecology and Environmental Sciences, 2009, 18(5):1609-1614 http://d.old.wanfangdata.com.cn/Periodical/tryhj200905001
[5]TANG H M, XIAO X P, TANG W G, et al. Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields[J]. PLoS One, 2014, 9(6):e100443 http://cn.bing.com/academic/profile?id=7165d8df5ba1baf7eb69ad50c4c75ced&encoded=0&v=paper_preview&mkt=zh-cn
[6]CHEN Z H, CHEN L J, ZHANG Y L, et al. Microbial properties, enzyme activities and the persistence of exogenous proteins in soil under consecutive cultivation of transgenic cottons (Gossypium hirsutum L.)[J]. Plant, Soil and Environment, 2011, 57(2):67-74 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a3acf76cac91757d3199c59d0ef02dbe
[7]WARTRUD L S, SEIDLER R J. Nontarget ecological effects of plant, microbial, and chemical introductions to terrestrial systems[M]//SEGOE S. Soil Chemistry and Ecosystem Health. Madison: Soil Science Society of America, 1998: 313-340
[8]张占, 朱青青, 冯远娇, 等. Bt水稻秸秆还田对土壤养分含量的影响[J].生态科学, 2014, 33(5):845-850 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201405004
ZHANG Z, ZHU Q Q, FENG Y J, et al. Effects of Bt rice straw returning on the content of soil nutrients[J]. Ecological Science, 2014, 33(5):845-850 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201405004
[9]DONEGAN K K, SCHALLER D L, STONE J K, et al. Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin[J]. Transgenic Research, 1996, 5(1):25-35 doi: 10.1007/bf01979919
[10]FANG H, DONG B, YAN H, et al. Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions[J]. Journal of Environmental Sciences, 2012, 24(7):1259-1270
[11]ZHOU D L, XU L P, GAO S W, et al. Cry1Ac transgenic sugarcane does not affect the diversity of microbial communities and has no significant effect on enzyme activities in rhizosphere soil within one crop season[J]. Frontiers in Plant Science, 2016, 7:265 doi: 10.3389/fpls.2016.00265
[12]张美俊, 杨武德.转Bt基因棉种植对根际土壤生物学特性和养分含量的影响[J].植物营养与肥料学报, 2008, 14(1):162-166 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb200801026
ZHANG M J, YANG W D. Effect of transgenic Bt cotton planting on biological characteristics and nutrient content in rhizosphere soil[J]. Plant Nutrition and Fertilizer Science, 2008, 14(1):162-166 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb200801026
[13]曾萍, 冯远娇, 张婉纯, 等.种植Bt玉米及秸秆还田后土壤中Bt蛋白的变化及其对土壤养分的影响[J].应用生态学报, 2014, 25(7):1997-2003 http://d.old.wanfangdata.com.cn/Periodical/yystxb201407021
ZENG P, FENG Y J, ZHANG W C, et al. Change of Bt protein in soil after growing Bt corns and returning corn straws to soil and its effects on soil nutrients[J]. Chinese Journal of Applied Ecology, 2014, 25(7):1997-2003 http://d.old.wanfangdata.com.cn/Periodical/yystxb201407021
[14]中华人民共和国农业部. NY/T 53-1987土壤全氮测定法(半微量开氏法)[S].北京: 中国标准出版社, 1987
Ministry of Agriculture of People's Republic of China. NY/T 53-1987 Method for the Determination of Soil Total Nitrogen (Semi-micro Kjeldahl Method)[S]. Beijing: China Standard Press, 1987
[15]中华人民共和国农业部. NY/T 1121.7-2014土壤检测第7部分: 土壤有效磷的测定[S].北京: 中国标准出版社, 2015
Ministry of Agriculture of People's Republic of China. NY/T 1121.7-2014 Soil Testing-part 7: Method for Determination of Available Phosphorus in Soil[S]. Beijing: China Standard Press, 2015
[16]中华人民共和国农业部. NY/T 889-2004土壤速效钾和缓效钾含量的测定[S].北京: 中国农业出版社, 2005
Ministry of Agriculture of People's Republic of China. NY/T 889-2004 Determination of Exchangeable Potassium and Non-exchangeable Potassium Content in Soil[S]. Beijing: China Agriculture Press, 2005
[17]中华人民共和国农业部. NY/T 1121.6-2006土壤检测第6部分: 土壤有机质的测定[S].北京: 中国标准出版社, 2006
Ministry of Agriculture of People's Republic of China. NY/T 1121.6-2006 Soil Testing Part 6: Method for Determination of Soil Organic Matter[S]. Beijing: China Standard Press, 2006
[18]中华人民共和国农业部. NY/T 1121.2-2006土壤检测第2部分: 土壤pH的测定[S].北京: 中国标准出版社, 2006
Ministry of Agriculture of People's Republic of China. NY/T 1121.2-2006 Soil Testing Part 2: Method for Determination of Soil pH[S]. Beijing: China Standard Press, 2006
[19]国家林业局. LY/T 1228-2015森林土壤氮的测定[S].北京: 中国标准出版社, 2015
The State Forestry Administration of People's Republic of China. LY/T 1228-2015 Nitrogen Determination Methods of Forest Soils[S]. Beijing: China Standard Press, 2015
[20]王建国, 杨林章, 单艳红.模糊数学在土壤质量评价中的应用研究[J].土壤学报, 2001, 38(2):176-183 http://d.old.wanfangdata.com.cn/Periodical/trxb200102005
WANG J G, YANG L Z, SHAN Y H. Application of fuzzy mathematics to soil quality evaluation[J]. Acta Pedologica Sinica, 2001, 38(2):176-183 http://d.old.wanfangdata.com.cn/Periodical/trxb200102005
[21]王育军, 周冀衡, 孙书斌, 等.云南省罗平县烟区土壤肥力适宜性评价及养分时空变异特征[J].土壤, 2015, 47(3):515-523 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503014
WANG Y J, ZHOU J H, SUN S B, et al. Evaluation of soil fertility suitability and spatial/temporal variability of nutrient contents of tobacco-planting soils in Luoping County of Yunnan, China[J]. Soils, 2015, 47(3):515-523 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503014
[22]LI X G, LI J, SUI H, et al. Evaluation and determination of soil remediation schemes using a modified AHP model and its application in a contaminated coking plant[J]. Journal of Hazardous Materials, 2018, 353:300-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93ccd18d5c174c512a1ba9877eba8e8d
[23]雷志栋, 杨诗秀, 许志荣, 等.土壤特性空间变异性初步研究[J].水利学报, 1985, (9):10-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y284222
LEI Z D, YANG S X, XU Z R, et al. Preliminary investigation of the spatial variability of soil properties[J]. Journal of Hydraulic Engineering, 1985, (9):10-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y284222
[24]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 28407-2012农用地质量分等规程[S].北京: 中国标准出版社, 2012
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 28407-2012 Regulation for Gradation on Agriculture Land Quality[S]. Beijing: China Standard Press, 2012
[25]李强, 周冀衡, 杨荣生, 等.曲靖植烟土壤养分空间变异及土壤肥力适宜性评价[J].应用生态学报, 2011, 22(4):950-956 http://d.old.wanfangdata.com.cn/Periodical/yystxb201104018
LI Q, ZHOU J H, YANG R S, et al. Soil nutrients spatial variability and soil fertility suitability in Qujing tobacco-planting area[J]. Chinese Journal of Applied Ecology, 2011, 22(4):950-956 http://d.old.wanfangdata.com.cn/Periodical/yystxb201104018
[26]王建武, 范慧芝, 冯远娇.不同还田方式对Bt玉米秸秆中Bt蛋白田间降解的影响[J].生态学杂志, 2009, 28(7):1324-1329 http://d.old.wanfangdata.com.cn/Periodical/stxzz200907020
WANG J W, FAN H Z, FENG Y J. Effects of straw return pattern on the degradation of Bt protein released from Bt corns in field[J]. Chinese Journal of Ecology, 2009, 28(7):1324-1329 http://d.old.wanfangdata.com.cn/Periodical/stxzz200907020

相关话题/土壤 棉花 基因 北京 植物