删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

气候×基因型×水分管理对河北平原冬小麦产量和WUE的影响

本站小编 Free考研考试/2022-01-01

孙蕊1, 2,,
董心亮1,
赵长龙1, 2,
苏寒1, 2,
王金涛1,
刘小京1, 2,
孙宏勇1, 2,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2018YFD0300504

详细信息
作者简介:孙蕊, 主要研究方向为农田生态水盐运移过程及调控机制。E-mail:sunrui172@mails.ucas.ac.cn
通讯作者:孙宏勇, 主要研究方向为农田水盐运移过程机理与调控。E-mail:hysun@sjziam.ac.cn
中图分类号:S512.1

计量

文章访问数:493
HTML全文浏览量:2
PDF下载量:317
被引次数:0
出版历程

收稿日期:2019-09-10
录用日期:2019-11-05
刊出日期:2020-02-01

Effect of climate, genotype, and water management on winter wheat yield and water use efficiency in Hebei Plain

SUN Rui1, 2,,
DONG Xinliang1,
ZHAO Changlong1, 2,
SU Han1, 2,
WANG Jintao1,
LIU Xiaojing1, 2,
SUN Hongyong1, 2,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Agricultural Water-saving, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key Research and Development Project of China2018YFD0300504

More Information
Corresponding author:SUN Hongyong, E-mail:hysun@sjziam.ac.cn


摘要
HTML全文
(1)(6)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:冬小麦是华北平原的主要作物,其生长受气候等环境因子和品种、管理措施等因素的共同影响。为了研究气候×基因型×水分管理互作对河北平原冬小麦产量及水分利用效率(WUE)的影响,以‘科农2009’‘藁优2018’和‘师栾02-1’3个该区域主栽冬小麦品种为材料,于2018—2019年沿北纬38°带,选择河北平原冬小麦主产区的4个典型试验站点(衡水、南皮、栾城、南大港)进行了不同水分管理(雨养、灌溉)的大田试验。结果表明:在灌溉条件下,衡水、南皮、栾城和南大港的小麦产量分别为6 316.7kg·hm-2、5 204.1 kg·hm-2、4 356.5 kg·hm-2和2 597.7 kg·hm-2,WUE分别为1.62 kg·m-3、1.72 kg·m-3、1.36 kg·m-3和1.08 kg·m-3;在雨养条件下,南皮、栾城、衡水和南大港的小麦产量分别为2 644.4 kg·hm-2、2 602.8 kg·hm-2、2 422.3 kg·hm-2影响1 784.3 kg·hm-2,WUE分别为1.13 kg·m-3、1.10 kg·m-3、1.18 kg·m-3和1.01 kg·m-3。统计分析表明,穗数是影响产量的最主要因素,气候×水分管理互作对产量和WUE均有极显著影响(P < 0.01),气候×基因型×水分管理互作对WUE有显著影响(P < 0.05);水分是影响产量和WUE的最重要因素。综合产量、耗水和WUE分析,在降水量偏少的年份,南皮在4个试验站点中冬小麦耗水量较少、WUE最高、产量较高。分蘖能力强的小麦品种是适宜该区域种植的潜力品种类型。
关键词:小麦品种/
产量/
水分管理/
基因型/
气候/
水分利用效率
Abstract:Winter wheat is the main crop in the North China Plain, and its growth is affected by weather, varieties, and management measures. Many scholars have conducted extensive research on the mechanism of winter wheat growth, but most of these studies focused on a single factor. Moreover, research was mostly conducted at the regional scale, with few studies being conducted in areas at the same latitude. To investigate the effects of weather, genotype, and water management interaction on winter wheat yield and water use efficiency (WUE), field experiments were conducted at four typical experimental sites (Hengshui, Nanpi, Luancheng and Nandagang) in the Hebei Plain in the 38° north latitude zone from 2018 to 2019. Three winter wheat varieties 'KN2009', 'GY2018' and 'SL02-1' and two water management levels-irrigation and rain-fed treatments-were used at all four sites. The soil water content was measured at 20 cm intervals in the 1.6 m soil profile before sowing and after harvest. Grain yield and yield components were also measured. Weather factors were collected from a nearby weather station 200-500 m from the experimental sites. Under irrigation conditions, grain yield was 6 316.7 kg·hm-2, 5 204.1 kg·hm-2, 4 356.5 kg·hm-2, and 2 597.7 kg·hm-2, respectively; WUE was 1.62 kg·m-3, 1.72 kg·m-3, 1.36 kg·m-3, and 1.08 kg·m-3, respectively; irrigation water use efficiency (IWUE) was 1.62 kg·m-3, 3.20 kg·m-3, 2.19 kg·m-3, and 1.02 kg·m-3, respectively, at Hengshui, Nanpi, Luancheng and Nandagang sites. Under rain-fed conditions, grain yield at Nanpi, Luancheng, Hengshui and Nandagang was 2 644.4 kg·hm-2, 2 602.8 kg·hm-2, 2 422.3 kg·hm-2, and 1 784.3 kg·hm-2, respectively; WUE was 1.13 kg·m-3, 1.10 kg·m-3, 1.18 kg·m-3, and 1.01 kg·m-3, respectively. Grain yield differed significantly among the four sites, while no significant difference was noted among varieties. With regard to WUE, trends differed between the irrigation and rain-fed treatments. The WUE of different sites under irrigation conditions differed significantly, while there were no significant differences among varieties. The WUE of different sites under rain-fed conditions did not differ significantly, while WUE differed to some extent among varieties. Statistical analysis of results for grain yield and yield components revealed that the number of spikes was the most important factor affecting yield, while the effects of grain number per spike and 1000-grain weight on yield were inconsistent with different sites, varieties, and water conditions. Multivariate analysis of variance revealed that the interaction of weather factors and water management had a highly significant effect on yield and WUE (P < 0.01), while weather factors, genotype, and water management had a significant effect on WUE (P < 0.05). Thus, the effects of climate conditions and management measures on winter wheat yield, water consumption, and WUE were significantly greater than those of variety, and water factor was the influential factor on yield and WUE. Based on comprehensive yield, water consumption, and WUE analysis, Nanpi had relatively high grain yield with low water consumption and relatively high WUE. Wheat varieties with strong tillering ability were potentially suitable for planting in this region.
Key words:Wheat variety/
Yield/
Water management/
Genotype/
Climate/
Water use efficiency

HTML全文


图1不同试验地点小麦试验季(2018—2019年)与多年(1994—2014年)月平均降水量和月平均温度对比
Figure1.Comparison of monthly precipitation and temperature during winter wheat growing season between 2018-2019 and average values from 1994 to 2014


下载: 全尺寸图片幻灯片

表1不同试验地点小麦的灌溉时期及灌溉量
Table1.Irrigation time and irrigation amount of winter wheat at different sites?mm
站点
Site
总灌溉量
Total irrigation amount
灌溉时期Irrigation time
越冬期
Recovering period
拔节期
Jointing stage
抽穗期
Booting stage
灌浆期
Grain filling stage
栾城Luancheng 80 0 80 0 0
衡水Hengshui 240 0 80 80 80
南皮Nanpi 80 0 80 0 0
南大港Nandagang 80 0 80 0 0


下载: 导出CSV
表2不同地点和水分管理下不同小麦品种的产量、构成要素及收获指数(2018—2019年)
Table2.Wheat yields, components and harvest indexes at different sites and irrigation treatments from 2018 to 2019
站点
Site
水分管理
Water management
基因型
Genotype
穗数
Spike number (spikes·m-2)
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
收获指数
Harvest index
产量
Yield (kg·hm-2)
栾城
Luancheng
灌溉
Irrigation
科农2009 KN2009 603b 33a 32.0a 0.45a 4 112.3b
师栾02-1 SL02-1 789a 28b 27.6b 0.45a 4 601.3a
藁优2018 GY2018 611b 29b 33.1a 0.41b 4 355.9ab
平均Mean 668 30 30.9 0.44 4 356.5
雨养
Rain-fed
科农2009 KN2009 382c 22a 36.3b 0.47a 2 048.1c
师栾02-1 SL02-1 462a 22a 30.9c 0.47a 3 130.1a
藁优2018 GY2018 426b 19b 38.9a 0.44b 2 630.1b
平均Mean 423 21 35.4 0.46 2 602.8
衡水
Hengshui
灌溉
Irrigation
科农2009 KN2009 644b 35a 40.5a 0.49a 6 166.7b
师栾02-1 SL02-1 765a 32b 34.1b 0.48a 6 383.4a
藁优2018 GY2018 741a 31b 41.8a 0.45b 6 400.1a
平均Mean 718 33 38.8 0.47 6 316.7
雨养
Rain-fed
科农2009 KN2009 402b 22ab 36.8b 0.42b 2 216.7b
师栾02-1 SL02-1 427a 24a 31.0c 0.47a 2 733.3a
藁优2018 GY2018 378c 19b 38.3a 0.36c 2 316.8b
平均Mean 402 22 35.4 0.42 2 422.3
南皮
Nanpi
灌溉
Irrigation
科农2009 KN2009 630b 33a 36.5b 0.45a 5 682.8a
师栾02-1 SL02-1 862a 30a 30.0c 0.46a 5 530.2a
藁优2018 GY2018 647b 21b 38.2a 0.41b 4 399.2b
平均Mean 713 28 34.9 0.44 5 204.1
雨养
Rain-fed
科农2009 KN2009 415b 25a 34.3b 0.43a 2 478.3b
师栾02-1 SL02-1 458a 25a 30.3c 0.42ab 2 695.8a
藁优2018 GY2018 441a 20b 37.8a 0.39b 2 759.0a
平均Mean 438 23 34.1 0.41 2 644.4
南大港
Nandagang
灌溉
Irrigation
科农2009 KN2009 271c 33ab 36.7a 0.48a 2 111.9b
师栾02-1 SL02-1 352a 35a 30.8b 0.48a 2 820.9a
藁优2018 GY2018 317b 31b 37.5a 0.42b 2 860.4a
平均Mean 314 33 35.0 0.46 2 597.7
雨养
Rain-fed
科农2009 KN2009 205c 30b 36.6a 0.48a 1 603.7b
师栾02-1 SL02-1 288a 32a 30.5b 0.49a 2 155.4a
藁优2018 GY2018 241b 30b 36.5a 0.48a 1 593.8b
平均Mean 245 31 34.5 0.48 1 784.3
同列数据后不同小写字母表示同一地点不同处理间差异显著(P < 0.05)。Different lowercase letters following the same column data indicate significant differences between treatments at the same location (P < 0.05).


下载: 导出CSV
表3不同地点、品种和水分管理下小麦产量及产量构成要素的相关分析
Table3.Correlation analysis of yield and yield components under different sites, varieties and irrigation treatments
因素
Factor
千粒重
1000-grain weight
穗粒数
Grains per spike
穗数
Number of spikes
水分
Water
灌溉Irrigation 0.293 0.106 0.770**
雨养Rain-fed -0.251 -0.329* 0.711**
品种
Variety
科农2009 KN2009 0.288 0.541** 0.875**
师栾02-1 SL02-1 0.353 0.206 0.823**
藁优2018 GY2018 0.302 0.343 0.886**
地点
Site
栾城Luancheng -0.642** 0.701** 0.678**
衡水Hengshui 0.415 0.764** 0.961**
南皮Nanpi 0.139 0.499* 0.837**
南大港Nandagang -0.181 -0.008 0.745**
水分处理中n = 36, 地点处理中n = 18, 品种处理中n = 24。所有处理**代表 0.01水平, *代表 0.05水平。n = 36 in water treatment, n = 18 in location treatment, and n = 24 in variety treatment. ** represents 0.01 level and * represents 0.05 level in all treatments.


下载: 导出CSV
表4不同地点和水分管理下不同冬小麦的水分利用效率(WUE) (2018—2019年)
Table4.Water use efficiencies at different sites and under irrigation treatments from 2018 to 2019
地点
Site
水分管理
Water management
基因型
Genotype
降雨量
Precipitation (mm)
灌溉量
Irrigation amount (mm)
土壤供水量
Soil water supply (mm)
农田耗水量
Farmland water consumption (mm)
水分利用效率
Water use efficiency (kg·m-3)
灌溉水分利用效率
Irrigation water use efficiency (kg·m-3)
栾城
Luancheng
灌溉
Irrigation
科农2009 KN2009 117.9 80.0 126.4 324.3 1.27a 2.58a
师栾02-1 SL02-1 117.9 80.0 121.7 319.6 1.44a 1.84b
藁优2018 GY2018 117.9 80.0 121.3 319.2 1.36a 2.16ab
平均Mean 321.0 1.36 2.19
雨养
Rain-fed
科农2009 KN2009 117.9 0 89.3 207.2 0.99ab
师栾02-1 SL02-1 117.9 0 117.0 234.9 1.33a
藁优2018 GY2018 117.9 0 149.0 266.9 0.99ab
平均Mean 236.3 1.10
衡水
Hengshui
灌溉
Irrigation
科农2009 KN2009 80.7 240.0 60.1 380.8 1.62a 1.65ab
师栾02-1 SL02-1 80.7 240.0 99.8 420.5 1.52a 1.52ab
藁优2018 GY2018 80.7 240.0 54.4 375.1 1.71a 1.70a
平均Mean 392.2 1.62 1.62
雨养
Rain-fed
科农2009 KN2009 80.7 0 126.9 207.6 1.07a
师栾02-1 SL02-1 80.7 0 129.5 210.2 1.30a
藁优2018 GY2018 80.7 0 114.8 195.5 1.18a
平均Mean 204.4 1.18
南皮
Nanpi
灌溉
Irrigation
科农2009 KN2009 72.2 80.0 131.5 283.7 2.00a 4.01a
师栾02-1 SL02-1 72.2 80.0 160.3 312.5 1.77ab 3.54b
藁优2018 GY2018 72.2 80.0 161.6 313.8 1.40b 2.05c
平均Mean 303.3 1.72 3.20
雨养
Rain-fed
科农2009 KN2009 72.2 0 179.5 251.7 0.98ab
师栾02-1 SL02-1 72.2 0 152.3 224.5 1.20a
藁优2018 GY2018 72.2 0 156.6 228.8 1.21a
平均Mean 235.0 1.13
南大港
Nandagang
灌溉
Irrigation
科农2009 KN2009 72.1 80.0 83.2 235.3 0.90a 0.64b
师栾02-1 SL02-1 72.1 80.0 97.0 249.1 1.13a 0.83b
藁优2018 GY2018 72.1 80.0 87.2 239.3 1.20a 1.58a
平均Mean 241.2 1.08 1.02
雨养
Rain-fed
科农2009 KN2009 72.1 0 113.4 185.5 0.86b
师栾02-1 SL02-1 72.1 0 95.6 167.7 1.28a
藁优2018 GY2018 72.1 0 105.2 177.3 0.90b
平均Mean 176.8 1.01
同列数据后不同小写字母表示同一地点不同处理间差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences between treatments at the same site (P < 0.05).


下载: 导出CSV
表5气候、基因型、水分管理及其互作对冬小麦产量的影响
Table5.Effects of climate, genotype, water management and their interaction on winter wheat yield
变异来源
Source of variation
自由度
d.f.
平方和
SS
平方和占比
SS (%)
均方
MS
F
F value
P
P value
气候Climate (C) 3 225 005.253 27.379 75 001.751 55.060 0.000
基因型Genotype (G) 2 11 335.897 1.379 5 667.949 4.161 0.022
水分Water management (W) 1 405 403.601 49.330 405 403.601 297.614 0.000
气候×基因型C × G 6 8 400.445 1.022 1 400.074 1.028 0.419
气候×水分管理C × W 3 92 799.209 11.292 30 933.070 22.709 0.000
基因型×水分管理G × W 2 743.634 0.090 371.817 0.273 0.762
气候×基因型×水分管理C × G × W 6 12 739.775 1.550 2 123.296 1.559 0.180
总和Total 72 821 812.311
P < 0.01代表极显著水平, P < 0.05代表显著水平。P < 0.01 and P < 0.05 represent extremely significant at 0.01 and 0.05 levels, respectively.


下载: 导出CSV
表6气候、基因型、水分及其互作对冬小麦水分利用效率(WUE)的影响
Table6.Effects of climate, genotype, water management and their interaction on water use efficiency (WUE) of winter wheat
变异来源
Source of variation
自由度
d.f.
平方和
SS
平方和占比
SS (%)
均方
MS
F
F value
P
P value
气候Climate (C) 3 1.695 21.589 0.565 14.485 0.000
基因型Genotype (G) 2 0.351 4.470 0.175 4.496 0.016
水分Water management (W) 1 2.026 25.805 2.026 51.958 0.000
气候×基因型C × G 6 0.374 4.763 0.062 1.597 0.169
气候×水分管理C × W 3 0.708 9.017 0.236 6.051 0.001
基因型×水分管理G × W 2 0.246 3.133 0.123 3.154 0.052
气候×基因型×水分管理C × G× W 6 0.579 7.374 0.097 2.475 0.036
总和Total 72 7.851
P < 0.01代表极显著水平, P < 0.05代表显著水平。P < 0.01 and P < 0.05 represent extremely significant at 0.01 and 0.05 levels, respectively.


下载: 导出CSV

参考文献(29)
[1]王涛, 吕昌河, 于伯华.基于WOFOST模型的京津冀地区冬小麦生产潜力评价[J].自然资源学报, 2010, 25(3):475-487 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201003013
WANG T, LU C H, YU B H. Assessing the potential productivity of winter wheat using WOFOST in the Beijing-Tianjin-Hebei Region[J]. Journal of Natural Resources, 2010, 25(3):475-487 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201003013
[2]梁钰琪.河北平原冬小麦节水栽培技术发展及推广影响因素研究[D].保定: 河北农业大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10086-1015381840.htm
LIANG Y Q. Study on water saving technology development and diffusion of winter wheat in the Hebei Plain[D]. Baoding: Agricultural University of Hebei, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10086-1015381840.htm
[3]WANG X P, HUANG G H, YANG J S, et al. An assessment of irrigation practices:sprinkler irrigation of winter wheat in the North China Plain[J]. Agricultural Water Management, 2015, 159:197-208 doi: 10.1016/j.agwat.2015.06.011
[4]PORTER J R, SEMENOV M A. Crop responses to climatic variation[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2005, 360(1463):2021-2035 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1569569
[5]谭凯炎, 邬定荣, 赵花荣.气候变暖背景下华北平原冬小麦生育期温度条件变化趋势分析[J].中国农业气象, 2017, 38(6):333-341 doi: 10.3969/j.issn.1000-6362.2017.06.001
TAN K Y, WU D R, ZHAO H R. Trend analysis of temperature conditions over different growth periods of winter wheat under climate warming in North China Plain[J]. Chinese Journal of Agrometeorology, 2017, 38(6):333-341 doi: 10.3969/j.issn.1000-6362.2017.06.001
[6]胡洵瑀, 王靖, 冯利平.华北平原冬小麦各生育阶段农业气候要素变化特征分析[J].中国农业气象, 2013, 34(3):317-323 doi: 10.3969/j.issn.1000-6362.2013.03.011
HU X Y, WANG J, FENG L P. Analysis on agro-climatic elements variation during winter wheat growing season in North China Plain[J]. Chinese Journal of Agrometeorology, 2013, 34(3):317-323 doi: 10.3969/j.issn.1000-6362.2013.03.011
[7]王占彪, 王猛, 尹小刚, 等.近50年华北平原冬小麦主要生育期水热时空变化特征分析[J].中国农业大学学报, 2015, 20(5):22-29 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201505003
WANG Z B, WANG M, YIN X G, et al. Spatiotemporal change characteristics of heat and rainfall during the growth period of winter wheat in the North China Plain from 1961 to 2010[J]. Journal of China Agricultural University, 2015, 20(5):22-29 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201505003
[8]裴宏伟, 孙宏勇, 沈彦俊, 等.不同灌溉处理下冬小麦水平衡与灌溉增产效率研究[J].中国生态农业学报, 2011(5):75-80 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110511&flag=1
PEI H W, SUN H Y, SHEN Y J, et al. Water balance and yield-increasing efficiency of irrigation of winter wheat under different irrigation schemes[J]. Chinese Journal of Eco-agriculture, 2011(5):75-80 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110511&flag=1
[9]胡玉昆, 杨永辉, 杨艳敏, 等.华北平原灌溉量对冬小麦产量、蒸发蒸腾量、水分利用效率的影响[J].武汉大学学报:工学版, 2009, 42(6):701-705 http://d.old.wanfangdata.com.cn/Periodical/whsldldxxb200906005
HU Y K, YANG Y H, YANG Y M, et al. Effect of irrigation on winter wheat yield, evapotranspiration and water use efficiency in North China Plain[J]. Engineering Journal of Wuhan University, 2009, 42(6):701-705 http://d.old.wanfangdata.com.cn/Periodical/whsldldxxb200906005
[10]李克南.华北地区冬小麦-夏玉米作物生产体系产量差特征解析[D].北京: 中国农业大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10019-1014221247.htm
LI K N. Yield gap analysis focused on winter wheat and summer maize rotation in the North China Plain[D]. Beijing: China Agricultural University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10019-1014221247.htm
[11]CASSMAN K G, DOBERMANN A, WALTERS D T, et al. Meeting cereal demand while protecting natural resources and improving environmental quality[J]. Annual Review of Environment and Resources, 2003, 28(1):315-358 doi: 10.1146/annurev.energy.28.040202.122858
[12]段艳娟.小麦生产力的基因型与气候效应模拟[D].南京: 南京农业大学, 2010 http://cdmd.cnki.com.cn/article/cdmd-10307-1012272539.htm
DUAN Y J. Modeling genotype by climate effect on wheat productivity[D]. Nanjing: Nanjing Agricultural University, 2010 http://cdmd.cnki.com.cn/article/cdmd-10307-1012272539.htm
[13]陈朝阳, 魏建伟, 陈淑萍, 等.黄淮海夏玉米品种籽粒产量基因型与环境互作分析[J].分子植物育种, 2019, 17(8):2749-2760 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201908045
CHEN Z Y, WEI J W, CHEN S P, et al. Genotype by environment interaction effect on grain yield of Huanghuaihai summer maize cultivars[J]. Molecular Plant Breeding, 2019, 17(8):2749-2760 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201908045
[14]TAO F L, ZHANG S, ZHANG Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics[J]. European Journal of Agronomy, 2012, 43:201-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d9aee27fb8b1706a4c0ad2bbe8e8ecc
[15]SEYOUM S, RACHAPUTI R, CHAUHAN Y, et al. Application of the APSIM model to exploit G×E×M interactions for maize improvement in Ethiopia[J]. Field Crops Research, 2018, 217:113-124 doi: 10.1016/j.fcr.2017.12.012
[16]XIN Y, TAO F L. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain[J]. Science of the Total Environment, 2019, 654:480-492 doi: 10.1016/j.scitotenv.2018.11.126
[17]GOLBA J, STUDNICKI M, GOZDOWSKI D, et al. Influence of genotype, crop management, and environment on winter wheat grain yield determination based on components of yield[J]. Crop Science, 2018, 58(2):660 doi: 10.2135/cropsci2017.07.0425
[18]STUDNICKI M, WIJATA M, SOBCZY?SKI G, et al. Effect of genotype, environment and crop management on yield and quality traits in spring wheat[J]. Journal of Cereal Science, 2016, 72:30-37 doi: 10.1016/j.jcs.2016.09.012
[19]MARTíN M M S, OLESEN J E, PORTER J R. A genotype, environment and management (G×E×M) analysis of adaptation in winter wheat to climate change in Denmark[J]. Agricultural and Forest Meteorology, 2014, 187:1-13 doi: 10.1016/j.agrformet.2013.11.009
[20]孙宏勇, 刘昌明, 张喜英, 等.不同行距对冬小麦麦田蒸发、蒸散和产量的影响[J].农业工程学报, 2006, 22(3):22-26 doi: 10.3321/j.issn:1002-6819.2006.03.006
SUN H Y, LIU C M, ZHANG X Y, et al. Effects of different row spacing on soil evaporation, evapotranspiration and yield of winter wheat[J]. Transactions of the CSAE, 2006, 22(3):22-26 doi: 10.3321/j.issn:1002-6819.2006.03.006
[21]冯广龙, 刘昌明.冬小麦根系生长与土壤水分利用方式相互关系分析[J].自然资源学报, 1998, 13(3):42-49 http://d.old.wanfangdata.com.cn/Periodical/zrzyxb199803007
FENG G L, LIU C M, et al. Analysis of root system growth in relation to soil water extraction pattern by winter wheat under water limiting conditions[J]. Journal of Natural Resources, 1998, 13(3):42-49 http://d.old.wanfangdata.com.cn/Periodical/zrzyxb199803007
[22]肖登攀, 陶福禄, 沈彦俊, 等.华北平原冬小麦对过去30年气候变化响应的敏感性研究[J].中国生态农业学报, 2014, 22(4):430-438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014408&flag=1
XIAO D P, TAO F L, SHEN Y J, et al. Sensitivity of response of winter wheat to climate change in the North China Plain in the last three decades[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4):430-438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014408&flag=1
[23]高静, 邬定荣, 王培娟, 等.华北平原冬小麦主要发育阶段日数对温度变化的敏感性分析[J].中国农业气象, 2016, 37(4):431-436 doi: 10.3969/j.issn.1000-6362.2016.04.007
GAO J, WU D R, WANG P J, et al. Relative sensitivity of main growth durations to temperature for winter wheat in North China Plain[J]. Chinese Journal of Agrometeorology, 2016, 37(4):431-436 doi: 10.3969/j.issn.1000-6362.2016.04.007
[24]ZHU R R, ZHENG H X, WANG E L, et al. A hybrid process based-empirical approach to identify the association between wheat productivity and climate in the North China Plain during the past 50 years[J]. Environmental Modelling and Software, 2018, 108:72-80 doi: 10.1016/j.envsoft.2018.07.017
[25]孙本普, 王勇, 李秀云, 等.不同年份的气候和栽培条件对冬小麦产量构成因素的影响[J].麦类作物学报, 2004, 24(2):83-87 doi: 10.3969/j.issn.1009-1041.2004.02.020
SUN B P, WANG Y, LI X Y, et al. The influence of climate and cultivation on the yield components of winter wheat in different years[J]. Acta Tritical Crops, 2004, 24(2):83-87 doi: 10.3969/j.issn.1009-1041.2004.02.020
[26]郑建敏, 李浦, 廖晓虹, 等.四川冬小麦产量构成因子初步分析[J].作物杂志, 2012(1):105-108 doi: 10.3969/j.issn.1001-7283.2012.01.027
ZHENG J M, LI P, LIAO X H, et al. Preliminary study on yield component factors of Sichuan winter wheat[J]. Crops, 2012(1):105-108 doi: 10.3969/j.issn.1001-7283.2012.01.027
[27]王家瑞, 刘卫星, 陈雨露, 等.不同灌水模式对冬小麦产量及水分利用的调控效应[J].麦类作物学报, 2018, 38(10):1229-1236 doi: 10.7606/j.issn.1009-1041.2018.10.12
WANG J R, LIU W X, CHEN Y L, et al. Regulatory effect of different irrigation regimes on grain yield and water use efficiency of winter wheat[J]. Journal of Triticeae Crops, 2018, 38(10):1229-1236 doi: 10.7606/j.issn.1009-1041.2018.10.12
[28]王海霞, 李玉义, 任天志, 等.不同灌溉制度对冬小麦产量与水分利用效率的影响[J].灌溉排水学报, 2010, 29(6):112-114 http://d.old.wanfangdata.com.cn/Periodical/ggps201006028
WANG H X, LI Y Y, REN T Z, et al. Effects of different irrigation regimes on yield and WUE of winter wheat[J]. Journal of Irrigation and Drainage, 2010, 29(6):112-114 http://d.old.wanfangdata.com.cn/Periodical/ggps201006028
[29]成林, 方文松.气候变化对雨养冬小麦水分利用效率的影响估算[J].应用气象学报, 2015, 26(3):300-310 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201503005
CHENG L, FANG W S. Estimation of climate change effects on water use efficiency of rain-fed winter wheat[J]. Journal of Applied Meteorological Science, 2015, 26(3):300-310 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201503005

相关话题/管理 作物 气象 河北 农业