覃金转,
王秀荣,
华南农业大学亚热带农业生物资源保护与利用国家重点实验室/华南农业大学根系生物学研究中心 广州 510642
基金项目: 广东省重点领域研发计划项目2018B020205003
详细信息
作者简介:辜晓婷, 主要从事丛枝菌根真菌与作物养分吸收关系研究。E-mail:739655890@qq.com
通讯作者:王秀荣, 主要从事丛枝菌根真菌与作物养分吸收关系研究。E-mail:xrwang@scau.edu.cn
中图分类号:S565.1计量
文章访问数:400
HTML全文浏览量:6
PDF下载量:219
被引次数:0
出版历程
收稿日期:2019-09-12
录用日期:2019-12-13
刊出日期:2020-03-01
Effect of mycorrhizal fungal inoculation on the growth and phosphorus uptake by soybean genotypes with different phosphorus use efficiency
GU Xiaoting,QIN Jinzhuan,
WANG Xiurong,
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Root Biology Center, South China Agricultural University, Guangzhou 510642, China
Funds: the Key Realm R & D Program of Guangdong Province2018B020205003
More Information
Corresponding author:WANG Xiurong: xrwang@scau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:接种丛枝菌根真菌(AMF)能显著促进大豆生长和对磷的吸收,但不同磷效率基因型大豆对AMF接种的响应还少有报道。为探究接种AMF对不同磷效率基因型大豆生长和磷转运基因表达的影响,以磷高效大豆BX10和磷低效大豆BD2为试验材料进行盆栽试验,设置接菌和不接菌处理,对大豆干重、菌根侵染性状、氮磷养分含量、根系性状,以及菌根诱导的磷转运基因表达进行了分析。结果表明,AMF接种显著促进了大豆的磷吸收,并且接菌效果存在显著的基因型差异,接种AMF显著增加了BD2的地上部干重、磷含量以及植株总磷吸收量,但只增加了BX10的地上部磷含量和总磷吸收量,对植株地上部干重没有显著影响。无论接种与否,BD2的地上部磷含量均显著高于BX10,表明磷低效的BD2具有较高的植株体内磷转运能力。不接菌条件下,两个大豆基因型根系性状无显著差异;接种AMF后BX10的根系体积和根系平均直径均显著高于BD2。BD2的菌根生长反应(MGR)和菌根磷反应(MPR)均显著高于BX10,对菌根依赖性更高。此外,在接菌处理的BD2根系,代表菌根途径磷吸收的磷转运基因GmPT8、GmPT9和GmPT10表达均显著高于BX10;相应地,BD2的总磷吸收量也显著高于BX10。以上结果表明,接种AMF对促进磷低效大豆BD2生长和磷吸收的作用更大,这可能主要是由于BD2菌根途径的磷吸收量较高,体内磷转运效率较高。以上结果将为研究AMF接种对磷吸收的贡献提供理论依据。
关键词:丛枝菌根真菌/
大豆/
磷效率/
基因型/
磷吸收/
根系性状/
磷转运基因
Abstract:Inoculation of arbuscular mycorrhizal fungi (AMF) can significantly promote soybean growth and phosphorus (P) uptake. However, information about the growth response of soybean genotypes with different P use efficiency to AMF inoculation is limited. In order to explore the effects of AMF inoculation on the growth and phosphate transporter gene expression in different soybean genotypes, a pot experiment was conducted to analyze plant dry weight, mycorrhizal infection characteristics, nitrogen and P contents, root traits, and mycorrhizal inducible phosphate transporter gene expression using P-efficient soybean BX10 and P-inefficient soybean BD2 under mycorrhizal (AM) and non-mycorrhizal (NM) inoculation treatments. The results showed that AMF inoculation significantly increased P uptake in the two soybean genotypes, and there were significant genotypic differences in mycorrhizal effects. Mycorrhizal inoculation significantly increased the shoot dry weight, P content, and total P uptake in BD2, but only significantly increased shoot P content and total P uptake in BX10. BD2 showed higher shoot P content than BX10 irrespective of the inoculation treatments, indicating that a high content of P was translocated from the roots to shoots in P-inefficient BD2. There was no significant difference in root traits between the two soybean genotypes under the NM treatment. However, BX10 showed higher root volume and average diameter than BD2 in the AM treatments. BD2 presented higher mycorrhizal dependence, mycorrhizal growth response, and mycorrhizal P response than BX10. Additionally, the expression of phosphate transporter genes GmPT8, GmPT9, and GmPT10, which indicate mycorrhizal P uptake pathway, was significantly higher in the mycorrhizal roots of BD2 than those of BX10, and consequently, total P uptake of BD2 was higher than that of BX10. The results indicate that mycorrhizal inoculation has greater effects on the growth and P uptake of BD2 than BX10, which can be attributed to the higher P uptake via the mycorrhizal pathway and higher P translocation efficiency of BD2 plants. The results provide a theoretical basis for studying the contribution of mycorrhizal inoculation to P uptake.
Key words:Arbuscular mycorrhizal fungi/
Soybean/
Phosphorus use efficiency/
Genotype/
Phosphorus uptake/
Root traits/
Phosphate transporter genes
HTML全文
图1接种菌根真菌对不同大豆基因型干重的影响
NM:不接菌处理; AM:接菌处理。不同字母表示差异达5%显著水平。NM: non-AMF inoculation; AM: AMF inoculation. Different lowercase letters indicate significant differences (P < 0.05).
Figure1.Effects of inoculation of arbuscular mycorrhizal fungi on plant dry weight of different soybean genotypes
下载: 全尺寸图片幻灯片
图2接种菌根真菌对不同大豆基因型菌根侵染性状和菌根生长反应的影响
不同字母表示两基因型间差异达5%显著水平。MGR: mycorrhizal growth response. Different lowercase letters indicate significant differences between two genotypes (P < 0.05).
Figure2.Effects of inoculation of arbuscular mycorrhizal fungi (AM)on mycorrhizal infection characteristics and mycorrhizal growth responses of different soybean genotypes
下载: 全尺寸图片幻灯片
图3接种菌根真菌对不同大豆基因型磷营养状况和菌根磷反应的影响
NM:不接菌处理; AM:接菌处理。不同字母表示差异达5%显著水平。MPR: mycorrhizal phosphorus response. NM: non-AMF inoculation; AM: AMF inoculation. Different lowercase letters indicate significant differences (P < 0.05).
Figure3.Effects of inoculation of arbuscular mycorrhizal fungi on P nutrition status and mycorrhizal P response of different soybean genotypes
下载: 全尺寸图片幻灯片
图4接种菌根真菌对不同大豆基因型氮营养状况的影响
NM:不接菌处理; AM:接菌处理。不同字母表示差异达5%显著水平。NM: non-AMF inoculation; AM: AMF inoculation. Different lowercase letters indicate significant differences (P < 0.05).
Figure4.Effects of inoculation of arbuscular mycorrhizal fungi on N nutrition status of different soybean genotypes
下载: 全尺寸图片幻灯片
图5接种菌根真菌对不同大豆基因型根系性状的影响
NM:不接菌处理; AM:接菌处理。不同字母表示差异达5%显著水平。NM: non-AMF inoculation; AM: AMF inoculation. Different lowercase letters indicate significant differences (P < 0.05).
Figure5.Effects of inoculation of arbuscular mycorrhizal fungi on root traits of different soybean genotypes
下载: 全尺寸图片幻灯片
图6接种菌根真菌对不同大豆基因型根系中磷转运基因表达的影响
NM:不接菌处理; AM:接菌处理。不同字母表示差异达5%显著水平。NM: non-AMF inoculation; AM: AMF inoculation. Different lowercase letters indicate significant differences (P < 0.05).
Figure6.Effects of inoculation of arbuscular mycorrhizal fungi on the expression of Pi transporter genes in roots of different soybean genotypes
下载: 全尺寸图片幻灯片
参考文献
[1] | SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62:227-250 doi: 10.1146/annurev-arplant-042110-103846 |
[2] | 李瑞卿, 刘润进, 李敏.园艺作物菌根及其在生态农业的应用[J].中国生态农业学报, 2002, 10(1):24-26 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200201007 LI R Q, LIU R J, LI M. Mycorrhizas of horticultural crops and its application in eco-agriculture[J]. Chinese Journal of Eco-Agriculture, 2002, 10(1):24-26 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200201007 |
[3] | SMITH S E, JAKOBSEN I, GR?NLUND M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition:Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011, 156(3):1050-1057 doi: 10.1104/pp.111.174581 |
[4] | 冯海艳, 冯固, 宋建兰, 等.丛枝菌根真菌根内菌丝碱性磷酸酶活性与菌根共生效应的研究[J].中国生态农业学报, 2004, 12(2):124-127 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200402038 FENG H Y, FENG G, SONG J L, et al. Studies on the relationship between the activity of alkaline phosphatase in intraradical hyphae of arbuscular mycorrhizae fungi and efficiency of mycorrhizal symbiosis[J]. Chinese Journal of Eco-Agriculture, 2004, 12(2):124-127 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200402038 |
[5] | HARRISON M J, DEWBRE G R, LIU J Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J]. The Plant Cell, 2002, 14(10):2413-2429 doi: 10.1105/tpc.004861 |
[6] | PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy Sciences of the United States of America, 2002, 99(20):13324-13329 doi: 10.1073/pnas.202474599 |
[7] | GRUNWALD U, GUO W B, FISCHER K, et al. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots[J]. Planta, 2009, 229(5):1023-1034 doi: 10.1007/s00425-008-0877-z |
[8] | 江夏, 陈伟立, 徐春香, 等.丛枝菌根真菌和磷水平对番茄幼苗侧根形成的影响[J].应用生态学报, 2015, 26(4):1186-1192 http://d.old.wanfangdata.com.cn/Periodical/yystxb201504029 JIANG X, CHEN W L, XU C X, et al. Influences of arbuscular mycorrhizal fungus and phosphorus level on the lateral root formation of tomato seedlings[J]. Chinese Journal of Applied Ecology, 2015, 26(4):1186-1192 http://d.old.wanfangdata.com.cn/Periodical/yystxb201504029 |
[9] | YAO Q, LIN F X, CHEN J Z, et al. Responses of citrus seedlings and a leguminous herb, Stylosanthes gracilis, to arbuscular mycorrhizal fungal inoculation[J]. Acta Horticulturae, 2008, 773:63-67 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c06b4a9ce72d6ca6a72a074e47614bf |
[10] | YAO Q, ZHU H H, CHEN J Z. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation[J]. Scientia Horticulturae, 2005, 105(1):145-151 doi: 10.1016/j.scienta.2005.01.003 |
[11] | 刘灵, 廖红, 王秀荣, 等.磷有效性对大豆菌根侵染的调控及其与根构型、磷效率的关系[J].应用生态学报, 2008, 19(3):564-568 http://d.old.wanfangdata.com.cn/Periodical/yystxb200803017 LIU L, LIAO H, WANG X R, et al. Regulation effect of soil P availability on mycorrhizal infection in relation to root architecture and P efficiency of Glycine max[J]. Chinese Journal of Applied Ecology, 2008, 19(3):564-568 http://d.old.wanfangdata.com.cn/Periodical/yystxb200803017 |
[12] | YAO Q, LI X L, CHRISTIE P. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies[J]. Journal of Plant Nutrition, 2001, 24(9):1409-1419 doi: 10.1081/PLN-100106991 |
[13] | WANG X R, PAN Q, CHEN F X, et al. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P[J]. Mycorrhiza, 2011, 21(3):173-181 doi: 10.1007-s00572-010-0319-1/ |
[14] | WANG X R, ZHAO S P, BüCKING H. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency[J]. Annals of Botany, 2016, 118(1):11-21 http://cn.bing.com/academic/profile?id=e5fd0fb91c0eb5e0b55fa4a292dd2d10&encoded=0&v=paper_preview&mkt=zh-cn |
[15] | WANG G, SHENG L, ZHAO D, et al. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system[J]. Frontiers in Plant Science, 2016, 7:1901 http://cn.bing.com/academic/profile?id=61579f033c98a55211ca8e1d91f16a14&encoded=0&v=paper_preview&mkt=zh-cn |
[16] | ZHAO S P, CHEN A, CHEN C J, et al. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean[J]. Physiologia Plantarum, 2019, 166(3):712-728 doi: 10.1111/ppl.12847 |
[17] | 覃金转, 王秀荣.不同基因型大豆磷镁养分互作效应初探[J].中国油料作物学报, 2019, 41(2):217-225 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201902010 QIN J Z, WANG X R. Interactive effect of phosphorus and magnesium in different soybean genotypes[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(2):217-225 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201902010 |
[18] | ZHAO J, FU J B, LIAO H, et al. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm[J]. Chinese Science Bulletin, 2004, 49(15):1611-1620 doi: 10.1007/BF03184131 |
[19] | ZHANG S, ZHOU J, WANG G H, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Applied Microbiology and Biotechnology, 2015, 99(23):10225-10235 doi: 10.1007/s00253-015-6913-6 |
[20] | HETRICK B A D, WILSON G W T, COX T S. Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors[J]. Canadian Journal of Botany, 1992, 70(10):2032-2040 doi: 10.1139/b92-253 |
[21] | KIERS E T, DUHAMEL M, BEESETTY Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis[J]. Science, 2011, 333(6044):880-882 doi: 10.1126/science.1208473 |
[22] | LIAO H, WAN H Y, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiology, 2006, 141(2):674-684 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c4b1f419142eff671a6e67dd4532267f |
[23] | BAON J B, SMITH S E, ALSTON A M. Mycorrhizal responses of barley cultivars differing in P efficiency[J]. Plant and Soil, 1993, 157(1):97-105 doi: 10.1007/BF02390231 |
[24] | ZHU Y G, SMITH S E, BARRITT A R, et al. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars[J]. Plant and Soil, 2001, 237(2):249-255 doi: 10.1023/A:1013343811110 |
[25] | TAMURA Y, KOBAE Y, MIZUNO T, et al. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean[J]. Bioscience Biotechnology and Biochemistry, 2012, 76(2):309-313 doi: 10.1271/bbb.110684 |
[26] | QIN L, GUO Y X, CHEN L Y, et al. Functional characterization of 14Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean[J]. PLoS One, 2012, 7(10):e47726 doi: 10.1371/journal.pone.0047726 |