郭华春,
云南农业大学薯类作物研究所 昆明 650201
基金项目: 国家马铃薯产业体系CARS-09-P15
详细信息
作者简介:刘贤文, 主要研究方向为作物生理与调控。E-mail:459645090@qq.com
通讯作者:郭华春, 主要研究方向为薯类作物栽培生理与育种。E-mail:ynghc@126.com
中图分类号:S154.3;S512.11计量
文章访问数:495
HTML全文浏览量:3
PDF下载量:333
被引次数:0
出版历程
收稿日期:2019-11-05
录用日期:2020-03-13
刊出日期:2020-06-01
Effects of potato and maize compound planting on soil allelochemicals and soil bacterial community structure
LIU Xianwen,GUO Huachun,
Root & Tuber Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China
Funds: the National Potato Industry Technology System of ChinaCARS-09-P15
More Information
Corresponding author:GUO Huachun, E-mail:ynghc@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探究马铃薯与玉米复合种植对化感物质积累与细菌群落结构的影响,分析轮作、间作缓解连作障碍的机制,本研究以马铃薯连作、玉米连作、马铃薯||玉米间作、马铃薯-玉米轮作第8年的土壤为对象,利用GC-MS测定土壤中化感物质含量,并采用Illumina Miseq高通量测序技术对土壤细菌16Sr DNA V4-V5区域进行测序,分析土壤中细菌多样性和群落结构的变化,并对化感物质和优势菌属进行相关性分析。结果表明:玉米连作和马铃薯连作会导致化感物质的积累,玉米连作土壤积累了更多的油酸、亚油酸、花生酸、木焦油酸等脂肪酸,马铃薯连作土壤积累了更多的硬脂醇、二十烷醇等脂肪醇类物质。轮作降低了大部分化感物质的积累,间作降低的化感物质种类相对轮作较少。不同种植方式下土壤细菌群落结构发生了显著变化,相对于连作,间作和轮作Ace指数和Chao指数显著升高。在门水平上,轮作土壤放线菌丰度显著高于马铃薯连作土壤,间作土壤拟杆菌门丰度显著低于玉米连作土壤,两种连作土壤中酸杆菌门丰度都较轮作显著升高。在属水平上,一些有益细菌如节杆菌属、溶杆菌属等在复合种植土壤中相对丰度更高。通过相关性分析发现土微菌属、小梨形菌属与脂肪醇类物质呈显著正相关,黄杆菌属、溶杆菌属、微杆菌属等与脂肪酸类物质呈显著负相关。马铃薯与玉米复合种植降低了化感物质在土壤中的积累,从而抑制了土壤细菌丰度的降低,提高了有益菌属丰度,消减了连作障碍。
关键词:马铃薯/
玉米/
连作障碍/
轮作/
间作/
化感物质/
土壤细菌
Abstract:To investigate the effects of potato and maize compound planting on allelochemicals accumulation and bacterial community structure, soil samples from continuous potato cropping, continuous maize cropping, potato and maize intercropping, and potato-maize rotation were collected in the eighth year of the experiment. Allelochemicals extracted from the soil were determined by GC-MS. Then, Illumina Miseq high-throughput sequencing technology was used to sequence the 16Sr DNA V4-V5 regions of soil bacteria to analyze changes in soil bacterial diversity and community structure. The results showed that:1) continuous cropping of maize and potatoes led to the accumulation of allelochemicals, 2) continuous maize cropping caused soil to accumulate more fatty acids such as oleic acid, linoleic acid, eicosanoic acid, and lignoceric acid, and 3) potato continuous cropping produced soil with more accumulated fatty alcohols such as 1-octadecanol and 1-eicosanol. Rotation reduced the accumulation of most allelochemicals, and the number of allelochemicals that were reduced by intercropping was smaller than that by rotation. The soil bacteria community structure changed significantly among different planting patterns. Compared with continuous cropping, intercropping and rotation had higher Ace and Chao indices. At the phylum level, the abundance of Actinobacteria was significantly higher under rotation than under continuous cropping of potato, the abundance of Bacteroides was significantly lower under intercropping than under continuous cropping of maize, and the abundance of Acidobacteria was significantly higher under both potato and maize continuous cropping than under rotation cropping. At the genus level, some beneficial bacteria such as Arthrobacter and Lysobacteria were relatively more abundant in compound planting soils. Through correlation analysis, it was found that the abundances of Pedomicrobium and Pirellula genera were significantly positively correlated with fatty alcohols, and that of Flavobacterium, Lysobacteria, and Microbacteria genera were significantly negatively correlated with fatty acids. Compound planting of potato and maize reduced the accumulation of allelochemicals in the soil, thus inhibiting reduction in soil bacterial abundance, increasing the abundance of beneficial bacteria, and ameliorating the issues associated with continuous cropping.
Key words:Potato/
Maize/
Continuous cropping obstacle/
Rotation/
Intercropping/
Allelochemical/
Soil bacteria
HTML全文
图1马铃薯和玉米不同种植方式下土壤化感物质总离子色谱
J:马铃薯||玉米间作; L:马铃薯-玉米轮作; M:马铃薯连作; Y:玉米连作。
Figure1.Total ion chromatogram (TIC) of soil allelochemicals in different planting patterns of potato and maize
J: potato intercropped with maize; L: potato-maize rotation; M: continuous cropping of potato; Y: continuous cropping of maize.
下载: 全尺寸图片幻灯片
图2马铃薯和玉米不同种植方式下土壤化感物质含量的主成分分析
J:马铃薯||玉米间作; L:马铃薯-玉米轮作; M:马铃薯连作; Y:玉米连作。
Figure2.Principal components analysis (PCA) of soil allelochemicals contents under different planting patterns of potato and maize
J: potato intercropped with maize; L: potato-maize rotation; M: continuous cropping of potato; Y: continuous cropping of maize.
下载: 全尺寸图片幻灯片
图3马铃薯和玉米不同种植方式下土壤化感物质含量比较
J:马铃薯||玉米间作; L:马铃薯-玉米轮作; M:马铃薯连作; Y:玉米连作。不同大写字母表示差异显著(P < 0.01)。
Figure3.Comparison of allelochemicals contents in different planting patterns of potato and maize
J: potato intercropped with maize; L: potato-maize rotation; M: continuous cropping of potato; Y: continuous cropping of maize. Different capital letters indicate significant differences (P < 0.01).
下载: 全尺寸图片幻灯片
图4马铃薯和玉米不同种植方式对土壤细菌群落门水平相对丰度的影响
J:马铃薯||玉米间作; L:马铃薯-玉米轮作; M:马铃薯连作; Y:玉米连作。
Figure4.Effect of planting pattern of potato and maize on the relative abundance of soil bacterial community at phylum level of bacteria
J: potato intercropped with maize; L: potato-maize rotation; M: continuous cropping of potato; Y: continuous cropping of maize.
下载: 全尺寸图片幻灯片
图5马铃薯和玉米不同种植方式对优势菌属(相对丰度 > 0.5%)相对丰度的影响
J:马铃薯||玉米间作; L:马铃薯-玉米轮作; M:马铃薯连作; Y:玉米连作。不同小写字母表示差异显著(P < 0.05)。
Figure5.Effect of planting pattern of potato and maize on the relative abundance of dominant genus (relative abundance > 0.5%) of bacteria
J: potato intercropped with maize; L: potato-maize rotation; M: continuous cropping of potato; Y: continuous cropping of maize. Different lowercase letters indicate significant differences (P < 0.05).
下载: 全尺寸图片幻灯片
图6马铃薯和玉米土壤化感物质与优势菌属Spearman相关性分析
*、**和***分别表示0.01 < P≤0.05、0.001 < P≤0.01和P≤0.001水平显著相关。
Figure6.Spearman correlation analysis between allelochemical and bacterial dominant genus in soils of potato and maize
*, ** and *** indicate significant correlations at 0.01 < P ≤ 0.05, 0.001 < P ≤ 0.01 and P ≤ 0.001, respectively.
下载: 全尺寸图片幻灯片
表1马铃薯和玉米不同种植方式样本测序信息
Table1.Sequencing information for different planting patterns of potato and maize
种植方式Planting pattern | 序列数Sequence number | 碱基数Base number | 平均长度Mean length (bp) | 最短序列长度Min. length (bp) | 最长序列长度Max. length (bp) |
J | 30 327±4 013ab | 17 569 068±2 179 033ab | 376.81±0.01a | 252±36a | 470±17a |
L | 30 940±1 451a | 19 059 916±761 099a | 376.78±0.07a | 228±21a | 467±21a |
M | 26 195±1 757ab | 16 822 169±406 624ab | 376.75±0.04a | 211±15a | 475±29a |
Y | 22 619±946b | 15 648 672±545 995b | 376.82±0.04a | 229±21a | 460±32a |
J:马铃薯||玉米间作; L:马铃薯-玉米轮作; M:马铃薯连作; Y:玉米连作。不同小写字母表示差异显著(P < 0.05)。J: potato intercropped with maize; L: potato-maize rotation; M: continuous cropping of potato; Y: continuous cropping of maize. Different lowercase letters indicate significant differences (P < 0.05). |
下载: 导出CSV
表2不同种植方式下土壤细菌Alpha多样性指数
Table2.Soil bacterial Alpha diversity index under different planting patterns of potato and maize
种植方式Planting pattern | Sobs指数Sobs index | Shannon指数Shannon index | Simpson指数Simpson index | Ace指数Ace index | Chao指数Chao index | 物种覆盖度Coverage |
J | 1 212.7±7.1a | 6.23±0.03a | 0.004 0±0.000 2a | 1 226.1±2.4a | 1 233.1±2.8a | 0.998±0.001 |
L | 1 198.0±3.3b | 6.09±0.07b | 0.006 2±0.001 8a | 1 218.7±2.8a | 1 226.1±2.4a | 0.998±0.000 |
M | 1 177.3±9.2c | 6.19±0.04ab | 0.004 2±0.000 2a | 1 198.8±5.1b | 1 205.8±4.5b | 0.997±0.001 |
Y | 1 167.0±2.2c | 6.15±0.00ab | 0.004 4±0.000 1a | 1 202.6±7.5b | 1 212.2±13.9b | 0.996±0.001 |
J:马铃薯||玉米间作; L:马铃薯-玉米轮作; M:马铃薯连作; Y:玉米连作。不同小写字母表示差异显著(P < 0.05)。J: potato intercropped with maize; L: potato-maize rotation; M: continuous cropping of potato; Y: continuous cropping of maize. Different lowercase letters indicate significant differences (P < 0.05). |
下载: 导出CSV
参考文献
[1] | 李立军.中国耕作制度近50年演变规律及未来20年发展趋势研究[D].北京: 中国农业大学, 2004: 149-150 http://cdmd.cnki.com.cn/Article/CDMD-10019-2004077745.htm LI L J. Involving regularities in recent 50 years and future trends in 2020 on farming system in China[D]. Beijing: China Agricultural University, 2004: 149-150 http://cdmd.cnki.com.cn/Article/CDMD-10019-2004077745.htm |
[2] | 李国庆, 郭华春.连作对马铃薯根际土壤细菌群落结构的影响[J].分子植物育种, 2014, 12(5): 914-928 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201405013 LI G Q, GUO H C. Effect of Potato continuous cropping on the rhizosphere soil bacteria community structure[J]. Molecular Plant Breeding, 2014, 12(5): 914-928 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201405013 |
[3] | RICE E L. Allelopathy[M]. 2nd ed. New York: Academic Press, 1984 |
[4] | TSUZUKI E, YAMAMOTO Y, SHIMIZU T. Fatty acids in buckwheat are growth inhibitors[J]. Annals of Botany, 1987, 60(1): 69-70 |
[5] | 刘苹, 赵海军, 仲子文, 等.三种根系分泌脂肪酸对花生生长和土壤酶活性的影响[J].生态学报, 2013, 33(11): 3332-3339 http://d.old.wanfangdata.com.cn/Periodical/stxb201311010 LIU P, ZHAO H J, ZHONG Z W, et al. The effects of three root exudated fatty acids on peanut (Arachis hypogaea L.) growth and soil enzymes activities[J]. Acta Ecologica Sinica, 2013, 33(11): 3332-3339 http://d.old.wanfangdata.com.cn/Periodical/stxb201311010 |
[6] | 吴庆利, 陈庆文, 黄文静, 等.蜂巢中长链脂肪醇的提取及抑菌作用研究[J].淮海工学院学报:自然科学版, 2017, 26(3): 30-33 http://d.old.wanfangdata.com.cn/Periodical/hhgxyxb201703008 WU Q L, CHEN Q W, HUANG W J, et al. Study on extraction and antibacterial activity of long chain fat alcohol in honeycomb[J]. Journal of Huaihai Institute of Technology: Natural Science Edition, 2017, 26(3): 30-33 http://d.old.wanfangdata.com.cn/Periodical/hhgxyxb201703008 |
[7] | CASTRILLO G, TEIXEIRA P J P L, PAREDES S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518 doi: 10.1038/nature21417 |
[8] | BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1): 807-838 doi: 10.1146/annurev-arplant-050312-120106 |
[9] | LI M S, GUO R, YU F, et al. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21[J]. International Journal of Molecular Sciences, 2018, 19(2): 443 doi: 10.3390/ijms19020443 |
[10] | KWAK M J, KONG H G, CHOI K, et al. Author correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1117 doi: 10.1038/nbt1118-1117 |
[11] | LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 2014, 78: 149-159 doi: 10.1016/j.soilbio.2014.07.019 |
[12] | 何天久, 吴巧玉, 曾宪浩, 等.马铃薯连作障碍形成机制与调控措施研究进展[J].江苏农业科学, 2016, 44(4): 1-4 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201604001 HE T J, WU Q Y, ZENG X H, et al. Research progress on formation mechanism and control measures of potato continuous cropping obstacles[J]. Jiangsu Agricultural Sciences, 2016, 44(4): 1-4 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201604001 |
[13] | 陈玲, 董坤, 杨智仙, 等.连作障碍中化感自毒效应及间作缓解机理[J].中国农学通报, 2017, 33(8): 91-98 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201708015 CHEN L, DONG K, YANG Z X, et al. Allelopathy autotoxcity effect of successive cropping obstacle and its alleviate mechanism by intercropping[J]. Chinese Agricultural Science Bulletin, 2017, 33(8): 91-98 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201708015 |
[14] | WANG Z G, BAO X G, LI X F, et al. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade[J]. Plant and Soil, 2015, 391(1/2): 265-282 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2044ebda3f65e8470f9187c1f65de93e |
[15] | 何志贵.半夏连作障碍发生机制与轮作修复研究[D].杨凌: 西北农林科技大学, 2019: 38-50 http://cdmd.cnki.com.cn/Article/CDMD-10712-1019844355.htm HE Z G. Mechanism of continuous cropping obstacles and crop rotation restoration in Pinellia ternate[D]. Yangling: Northwest A & F University, 2019: 38-50 http://cdmd.cnki.com.cn/Article/CDMD-10712-1019844355.htm |
[16] | 谭雪莲.轮作模式下马铃薯土壤微生物多样性、酶活性及根系分泌物的研究[D].兰州: 甘肃农业大学, 2016: 20-25 http://cdmd.cnki.com.cn/Article/CDMD-10733-1017824773.htm TAN X L. Study on soil microbial diversity, metabolic enzyme activity and root exudate accumulated features of potato under different rotation cropping patterns[D]. Lanzhou: Gansu Agricultural University, 2016: 20-25 http://cdmd.cnki.com.cn/Article/CDMD-10733-1017824773.htm |
[17] | 徐杨斌, 冒德寿, 王德懿, 等.基于保留指数的GC- TOF/MS法分析缬草油中挥发性成分[J].香料香精化妆品, 2018, (5): 1-5 doi: 10.3969/j.issn.1000-4475.2018.05.001 XU Y B, MAO D S, WANG D Y, et al. Analysis of volatile components in valerian oil by GC-TOF/MS based on retention index[J]. Flavour Fragrance Cosmetics, 2018, (5): 1-5 doi: 10.3969/j.issn.1000-4475.2018.05.001 |
[18] | 何小燕, 田洪磊, 詹萍, 等.鸡肉香精最适风味前体PLSR分析与研究[J].现代食品科技, 2016, 32(10): 268-275 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzspgykj201610040 HE X Y, TIAN H L, ZHAN P, et al. Analysis and study of the desirable precursor of the chicken flavor based on PLSR[J]. Modern Food Science and Technology, 2016, 32(10): 268-275 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzspgykj201610040 |
[19] | MANDAVA N B. Chemistry and biology of allelopathic agents[C]//American Chemical Society. The Chemistry of Allelopathy. Washington: ACS Publications, 1985: 33-54 |
[20] | 张文明, 邱慧珍, 张春红, 等.不同连作年限马铃薯根系分泌物的成分鉴定及其生物效应[J].中国生态农业学报, 2018, 26(12): 1811-1818 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1206&journal_id=zgstny ZHANG W M, QIU H Z, ZHANG C H, et al. Identification of chemicals in potato root exudates under different years of continuous cropping and their biologic effects[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1811-1818 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1206&journal_id=zgstny |
[21] | STAPLES C A, PETERSON D R, PARKERTON T F, et al. The environmental fate of phthalate esters: A literature review[J]. Chemosphere, 1997, 35(4): 667-749 doi: 10.1016/S0045-6535(97)00195-1 |
[22] | 王庆庆, 聂丽军, 王湦曼, 等.双酚A对植物影响的研究进展[J].中国生态农业学报, 2014, 22(9): 1002-1009 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2014902&journal_id=zgstny WANG Q Q, NIE L J, WANG S M, et al. Advances in the effects of bisphenol A on plants[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1002-1009 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2014902&journal_id=zgstny |
[23] | 姬广海.溶杆菌属及其在植物病害防治中的研究进展[J].云南农业大学学报, 2011, 26(1): 124-130 doi: 10.3969/j.issn.1004-390X(n).2011.01.022 JI G H. Advances in the study on Lysobacter spp. bacteria and their effects on biological control of plant diseases[J]. Journal of Yunnan Agricultural University, 2011, 26(1): 124-130 doi: 10.3969/j.issn.1004-390X(n).2011.01.022 |
[24] | YUAN J, ZHAO J, WEN T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1): 156 doi: 10.1186/s40168-018-0537-x |
[25] | CORDOVEZ V, SCHOP S, HORDIJK K, et al. Priming of plant growth promotion by volatiles of root-associated Microbacterium spp.[J]. Applied and Environmental Microbiology, 2018, 84(22): e01865-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac044e20f536a8bbd34e5f6ebb2af440 |
[26] | 李娟, UWAREMWE C, 冷艳, 等.节杆菌属细菌处理有机物和重金属污染物的研究进展[J].环境科学与技术, 2017, 40(10): 89-97 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201710016 LI J, UWAREMWE C, LENG Y, et al. Progress on the study of biodegradation of organic pollutants and adsorption of heavy metals with Arthrobacter strains[J]. Environmental Science & Technology, 2017, 40(10): 89-97 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201710016 |
[27] | 梁浩花, 陶红, 王亚娟, 等.一株邻苯二甲酸二丁酯和邻苯二甲酸二(2-乙基己基)酯降解菌的筛选鉴定与降解特性[J].浙江农业学报, 2019, 31(7): 1145-1153 doi: 10.3969/j.issn.1004-1524.2019.07.15 LIANG H H, TAO H, WANG Y J, et al. Isolation, identification and degradation characteristics of a dibutyl phthalate and di-(2-ethylhexyl) phthalate degrading bacterium[J]. Acta Agriculturae Zhejiangensis, 2019, 31(7): 1145-1153 doi: 10.3969/j.issn.1004-1524.2019.07.15 |
[28] | CHEN Y P, REKHA P D, ARUN A B, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology, 2006, 34(1): 33-41 doi: 10.1016/j.apsoil.2005.12.002 |
[29] | 肖潇.豆科植物根际和根瘤内生细菌群落结构、变化规律及其影响因素研究[D].杨凌: 西北农林科技大学, 2017: 26 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017101974.htm XIAO X. The structure, variation and influence factors of leguminous plant rhizosphere and nodule endosphere microbiome[D]. Yangling: Northwest A & F University, 2017: 26 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017101974.htm |
[30] | DILIKA F, BREMNER P D, MEYER J J M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites[J]. Fitoterapia, 2000, 71(4): 450-452 doi: 10.1016/S0367-326X(00)00150-7 |
[31] | WOLI?SKA A, KU?NIAR A, ZIELENKIEWICZ U, et al. Indicators of arable soils fatigue-Bacterial families and genera: A metagenomic approach[J]. Ecological Indicators, 2018, 93: 490-500 doi: 10.1016/j.ecolind.2018.05.033 |