删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

秸秆热解气化工程生态价值量估算方法研究

本站小编 Free考研考试/2022-01-01

王莹1,,
王亚静1,
王红彦2,
王环1,
毕于运1,,
1.中国农业科学院农业资源与农业区划研究所 北京 100081
2.中国农业科学院农业信息研究所 北京 100081
基金项目: 国家自然科学基金面上项目41771569

详细信息
作者简介:王莹, 主要研究方向为资源环境经济与政策。E-mail:caaswy@163.com
通讯作者:毕于运, 主要研究方向为资源环境经济与政策E-mail:biyuyun@caas.cn
中图分类号:S38

计量

文章访问数:310
HTML全文浏览量:8
PDF下载量:304
被引次数:0
出版历程

收稿日期:2019-07-29
录用日期:2020-02-23
刊出日期:2020-06-01

Ecological value estimation method of the straw pyrolysis engineering

WANG Ying1,,
WANG Yajing1,
WANG Hongyan2,
WANG Huan1,
BI Yuyun1,,
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Funds: the National Natural Science Foundation of China41771569

More Information
Corresponding author:BI Yuyun, E-mail:biyuyun@caas.cn


摘要
HTML全文
(1)(5)
参考文献(45)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:秸秆热解气化工程是一项高质消纳秸秆资源的生态生产工程,工程项目将秸秆资源转换产出"气、炭、油、液",实现了秸秆资源的生态价值,对我国农业领域落实国家节能减排任务具有重要实践意义。准确估算秸秆热解气化工程的生态价值量,提供系统全面的定量评价指标体系与计算方法,是有效推动农业绿色发展的重要科学依据。本研究基于生态价值理论中的二分法理论,对秸秆热解气化工程生态价值量的构成进行分析,得出秸秆热解气化利用项目主要产生的生态效益资产由减排效益资产与废弃资源商品化资产共同构成。据此,建立了秸秆热解气化工程生态价值量估算总公式,即:秸秆热解气化工程生态价值量(VPE)=秸秆热解气化工程减排效益货币价值(VEB)+秸秆资源产品经济价值(VRC)。在计算过程中,选取生命周期分析(LCA)法计量秸秆热解气化工程项目的净减排量,并借助二氧化碳影子价格将净减排量进行货币化,得到工程减排效益资产(VEB);而后,计算出通过生态生产项目实现的秸秆资源产品经济价值(VRC);最终,将VEBVRC加总,得到秸秆热解气化工程生态价值量(VPE)。本研究在方法构建的同时,采用文献调研法对各个计算环节所需参数的选取进行了分析与对比,提供了计算过程所需的参数体系。本研究在方法研究与参数研究一体化研究过程中,力图在以下3个方面取得实质性的突破和创新:一是不仅局限于从减排效益视角进行分析与研究,系统全面构建秸秆热解气化工程项目生态价值量估算模型。二是明确将项目生态"潜在价值"合理转化为市场"真实价值",以货币价值形式对秸秆热解气化项目生态效益进行计价衡量。三是本研究在终端能源产品替代减排量估算研究过程中,考量了不同技术工艺水平和产品的能源转换率对温室气体排放的影响。
关键词:秸秆/
热解气化工程/
能源替代/
生态价值量/
估算方法/
参数体系
Abstract:The straw pyrolysis project is an ecological production project designed to convert high quality agricultural straw waste into gas, carbon, oil, and liquid. It has an important practical significance for conserving national energy and reducing emissions in the China's agricultural fields. It has been an important scientific basis to accurately estimate the ecological value of the straw pyrolysis project and provides a systematic and comprehensive quantitative evaluation index system and calculation method to effectively promote green development in agriculture. This paper analyzed the ecological value composition of straw pyrolysis engineering based on the dichotomy theory of ecological value theory. It was concluded that the main ecological beneficial assets generated by the project of straw pyrolysis project were emission reduction and waste resource commercialization. The general formula for estimating the ecological value of straw pyrolysis project established was the ecological value of straw pyrolysis and the gasification project (VPE)=the monetary value of straw pyrolysis project emission reduction (VEB) + the economic value of straw resource products (VRC). In the calculation process, the life cycle analysis (LCA) method was selected to measure the net emission reduction of the straw pyrolysis project, and then the net emission reduction was valued with the help of carbon dioxide shadow prices to obtain the project's emission reduction (VEB). Furthermore, the economic value of straw resource products achieved by the ecological production project (VRC) was calculated. Finally, VEB and VRC were included to obtain the ecological value of straw pyrolysis and gasification engineering (VPE). The method was designed using the literature research method to analyze the parameter selection required by each calculation link, and the parameter system required for the calculation process was provided. This study attempted to achieve substantial breakthroughs and innovations during the integration of both method and parameter research in the following three aspects:firstly, the ecological value estimation model of straw pyrolysis project was constructed; not limited to analysis and research from the emission reduction benefits perspective, with a more systematic and comprehensive ecological value estimation method and its required parameter system was established. Secondly, the potential value of the project should be reasonably converted into the "real market value"; in this study, the ecological benefits of the straw pyrolysis project were monetarily priced and measured. Thirdly, this study considered the impact of different technological levels and product energy conversion rates on greenhouse gas emissions during the process of estimating the displacement reduction of end-use energy products. Throughout the study, the general idea of "scientific modelling, reasonable pricing, and accurate estimation" was followed to provide a reliable foundation and support the decision to formulate the national energy saving and emission reduction plans.
Key words:Straw/
Pyrolysis engineering/
Energy substitution/
Ecological value/
Estimation method/
Parameter system

HTML全文


图1秸秆热解气化工程生态价值量估算方法构建技术流程图
ABE, BP主要由两个内容构成: 1)秸秆以焚烧方式处理产生的气体排放; 2)秸秆露天有氧堆放自然腐解所产生的气体排放。ABE, PE指项目产品秸秆燃气、秸秆生物炭、木醋液和木焦油在不替代煤炭、化肥、农药的情景下, 利用石油煤炭、化肥、农药等所生产的温室气体排放。APE+AUE采用生命周期评价法计算。
Figure1.Construction of ecological value estimation method for straw pyrolysis project
ABE, BP is mainly composed of two parts: 1) gas emission from burning straw; 2) gas emissions from the decomposition of straw stacked in the open. ABE, PE refers to the greenhouse gas emissions produced by the use of petroleum coal, chemical fertilizers, pesticides, etc. under the scenario that the project products straw gas, straw biochar, wood vinegar, and wood tar do not replace coal, fertilizers, and pesticides. APE+AUE is calculated by the method of life cycle assessment analysis (LCA).


下载: 全尺寸图片幻灯片

表1小麦、玉米和水稻秸秆露天焚烧排放因子
Table1.Emission factors from open burning of wheat, corn and rice straws
作物
Crop
文献来源
Reference
秸秆含水率
Moisture content of straw (%)
排放因子Emission factor (g·kg-1)
CO2 CH4 N2O
小麦
Wheat
[23] 10.69 4.22±0.51
[23] 31.30 4.71±1.37
[24] 10.76 1 339.11 3.30
[24] 16.25 1 176.31 4.11
[25] 1 235.81±45.38
[26] 1 557.90±85.8
[27] 586.39±20.25 2.22±0.12 0.05±0.002
玉米
Maize
[23] 10.44 2.41±0.46
[23] 27.77
[24] 7.92 1 294.23 5.40±0.01
[24] 11.91 1 210.14
[25] 1 330.96±58.25 3.31
[26] 1 261.50±59.90 4.20
[27] 620.72 2.95 0.12
水稻
Rice
[24] 9.52 1 287.63 4.09
[24] 12.97 1 098.79 5.41
[25] 1 248.10±42.88 .
[26] 791.30
[27] 656.27 2.19 0.11


下载: 导出CSV
表2小麦、玉米和水稻秸秆露天焚烧建议排放因子
Table2.Suggested emission factors for open burning of wheat, corn and rice straw
秸秆种类
Straw type
排放因子Emission factor (g·kg-1)
CO2 CH4 N2O
小麦Wheat 1 328 4.0 0.05
玉米Maize 1 274 3.8 0.12
水稻Rice 1 211 4.8 0.11


下载: 导出CSV
表3作物秸秆热解多联产技术工艺参数
Table3.Process parameters of three straw carbonization polygeneration technologies
参数Parameter A B C
产气量
Gas production (m3·kg-1)
0.40 0.35 0.30
气体热量
Gas calorific (MJ·m-3)
3~6 10~12 8~10
生物炭产量
Biochar production (kg·kg-1)
0.26~0.30 0.28~0.32 0.28~0.32
A:内加热连续式热解炭气联产技术工艺; B:外加热连续式热解炭气联产技术工艺; C:外加热连续式热解炭气油多联产技术工艺。A: internal heating type moving bed of biomass carbon gas cogeneration technology; B: external heating type moving bed pyrolysis carbon gas cogeneration technology; C: external heating type moving bed pyrolysis carbon gas generation technology.


下载: 导出CSV
表4不同生物炭处理条件下CH4与N2O累积排放量
Table4.Cumulative emissions of CH4 and N2O under different treatments of biochar application
文献来源
Reference
试验地区
Region
观测时期(年-月)
Observation period (year-month)
施肥条件
Fertilization condition
生物炭施用量
Biochar application rate (t·hm-2)
CH4排放量
CH4 emission (kg·hm-2)
N2O排放量
N2O emission (kg·hm-2)
综合温室效应
Comprehensive greenhouse effect [kg(CO2-e)·hm-2]
[31] 干旱区玉米农田
Corn fields in arid area
2018-05—2018-10 常规施肥
Conventional fertilization
0 1.905 0.397 165.931
15 2.999 0.296 163.183
30 2.529 0.169 113.587
45 0.323 0.054 24.167
[30] 太湖平原地区稻田
Rice fields in the Taihu Plain
2010-06—2010-10 不施肥
No fertilization
0 208.000
10 285.000
40 286.000
[32] 关中地区玉米农田
Corn fields in Guanzhong area
2015-06—2016-05 常规施肥
Conventional fertilization
4 -0.300 1.040 302.420
8 -0.340 0.910 262.680
[33] 成都平原稻田
Rice field in Chengdu Plain
2010-05—2011 不施肥
No fertilization
0 540.400
20 964.510
40 326.170
[34] 河套灌区玉米农田
Corn fields in Hetao Irrigation Area
2015-05—2015-10 常规施肥
Conventional fertilization
0 -0.195 0.336 95.253
15 -0.702 0.097 11.356
30 -0.028 -0.028 -9.044
45 -0.039 -0.035 -11.405


下载: 导出CSV
表5燃料煤、柴油、天然气的IPCC(2006)国家温室气体排放系数清单
Table5.IPCC (2006) greenhouse gas emission coefficient list of fuel coal, diesel and natural gas
气体
Gas
排放源
Emission source
排放系数
Emission factor
单位
Unit
CO2 燃料煤Coal 94.6 (ICO2) kg(CO2)·TJ-1
柴油Diesel 74.1 (LCO2)
天然气Natural gas 56.1 (JCO2)
CH4 燃料煤Coal 1.0 (ICH4) kg(CH4)·TJ-1
柴油Diesel 3.0 (LCH4)
天然气Natural gas 1.0 (JCH4)
N2O 燃料煤Coal 1.5 (IN2O) kg(N2O)·TJ-1
柴油Diesel 0.6 (LN2O)
天然气Natural gas 0.1 (JN2O)


下载: 导出CSV

参考文献(45)
[1]崔永和.生态价值:深化价值论研究的前沿视域[J].河南师范大学学报:哲学社会科学版, 2008, 35(4):1-6 http://d.old.wanfangdata.com.cn/Periodical/zrbzfyj200705018
CUI Y H. Ecological value:The frontier visual threshold of deepening the axiology study[J]. Journal of Henan Normal University, 2008, 35(4):1-6 http://d.old.wanfangdata.com.cn/Periodical/zrbzfyj200705018
[2]董敏, 陈平留, 张国防.基于资本资产定价模型的森林资源资产评估基准折现率测算[J].资源科学, 2019, 41(3):572-581 http://d.old.wanfangdata.com.cn/Periodical/zykx201903014
DONG M, CHEN P L, ZHANG G F. Benchmark discount rate calculation for forest resource asset valuation via capital asset pricing model[J]. Resources Science, 2019, 41(3):572-581 http://d.old.wanfangdata.com.cn/Periodical/zykx201903014
[3]单晟烨, 李佳珊, 张冬有.哈尔滨城市公园湿地环境空气负离子浓度及其生态价值估算[J].湿地科学, 2015, 13(4):478-482 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201504014
SHAN S Y, LI J S, ZHANG D Y. Concentrations of negative air ion and their ecological values of wetland environment in city parks in Harbin City[J]. Wetland Science, 2015, 13(4):478-482 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201504014
[4]阿布都热合曼·哈力克, 杨金龙.新疆草地生态价值及其可持续开发利用的研究[J].干旱区资源与环境, 2006, 20(5):197-200 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj200605038
ABDIRAHMAN·HALIK, YANG J L. Study of the ecological value and sustainable exploitation and utilization of Xinjiang grass[J]. Journal of Arid Land Resources and Environment, 2006, 20(5):197-200 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj200605038
[5]谢高地, 肖玉.农田生态系统服务及其价值的研究进展[J].中国生态农业学报, 2013, 21(6):645-651 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013601&flag=1
XIE G D, XIAO Y. Review of agro-ecosystem services and their values[J]. Chinese Journal of Eco-Agriculture, 2013, 21(6):645-651 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013601&flag=1
[6]吴丹, 刘书俊. CVM法对长江口海洋生态价值的评价应用[J].环境保护科学, 2009, 35(4):85-88 http://d.old.wanfangdata.com.cn/Periodical/hjbhkx200904026
WU D, LIU S J. Application of CVM in evaluating value of marine ecosystem in Yangtze River estuary[J]. Environmental Protection Science, 2009, 35(4):85-88 http://d.old.wanfangdata.com.cn/Periodical/hjbhkx200904026
[7]陈冬冬, 高旺盛, 陈源泉.中国农作物秸秆资源化利用的生态效应和技术选择分析[J].中国农学通报, 2007, 23(10):143-149 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200710032
CHEN D D, GAO W S, CHEN Y Q. Analysis on the ecological effect and technological selection of straw resources utilization in China[J]. Chinese Agricultural Science Bulletin, 2007, 23(10):143-149 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200710032
[8]陈洪章.秸秆资源生态高值化理论与应用[M].北京:化学工业出版社, 2006
CHEN H Z. Theory and Application of Straw Resource Ecological Value[M]. Beijing:Chemical Industry Press, 2006
[9]王红彦.基于LCA的秸秆沼气和秸秆热解气化工程环境影响评价[D].北京: 中国农业科学院, 2018
WANG H Y. Environmental impact evaluation of straw biogas and straw gasification projects based on LCA[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018
[10]王磊, 高春雨, 毕于运, 等.大型秸秆沼气集中供气工程温室气体减排估算[J].农业工程学报, 2017, 33(14):223-228 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201714031
WANG L, GAO C Y, BI Y Y, et al. Greenhouse gas emission mitigation calculation of large scale straw biogas centralized supply project[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14):223-228 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201714031
[11]霍丽丽, 赵立欣, 孟海波, 等.秸秆类生物质气炭联产全生命周期评价[J].农业工程学报, 2016, 32(S1):261-266 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2016z1036
HUO L L, ZHAO L X, MENG H B, et al. Life cycle assessment analysis for cogeneration of fuel gas and biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S1):261-266 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2016z1036
[12]张阿凤, 程琨, 潘根兴, 等.秸秆生物黑炭农业应用的固碳减排计量方法学探讨[J].农业环境科学学报, 2011, 30(9):1811-1815 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201109018
ZHANG A F, CHENG K, PAN G X, et al. An approach for measurement the carbon sequestration and mitigation of straw biochar amendment[J]. Journal of Agro-Environment Science, 2011, 30(9):1811-1815 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201109018
[13]POESCHL M, WARD S, OWENDE P. Environmental impacts of biogas deployment-Part Ⅱ:Life cycle assessment of multiple production and utilization pathways[J]. Journal of Cleaner Production, 2012, 24:184-201
[14]BERGLUND M, B?RJESSON P. Assessment of energy performance in the life-cycle of biogas production[J]. Biomass and Bioenergy, 2006, 30(3):254-266 doi: 10.1016-j.biombioe.2005.11.011/
[15]GARFí M, CASTRO L, MONTERO N, et al. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia:A life cycle assessment[J]. Bioresource Technology, 2019, 274:541-548 http://cn.bing.com/academic/profile?id=190f0e7c5ebd5abd5e6b5a414f05a7c5&encoded=0&v=paper_preview&mkt=zh-cn
[16]LIJó L, GONZáLEZ-GARCíA S, BACENETTI J, et al. Life cycle assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops[J]. Renewable Energy, 2014, 68:625-635 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cf5b1d59d8d8ec7ceb59416a3dc8bb5f
[17]SASTRE C M, GONZáLEZ-ARECHAVALA Y, SANTOS A M. Global warming and energy yield evaluation of Spanish wheat straw electricity generation-A LCA that takes into account parameter uncertainty and variability[J]. Applied Energy, 2015, 154:900-911 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a150a57d4a2dc5a393d2f97284d93026
[18]CALDEIRA-PIRES A, BENOIST A, DA LUZ S M, et al. Implications of removing straw from soil for bioenergy:An LCA of ethanol production using total sugarcane biomass[J]. Journal of Cleaner Production, 2018, 181:249-259 http://cn.bing.com/academic/profile?id=08729db013edc3e9baac6f26b4dea53d&encoded=0&v=paper_preview&mkt=zh-cn
[19]ZUCARO A, FORTE A, FIERRO A. Life cycle assessment of wheat straw lignocellulosic bio-ethanol fuel in a local biorefinery prospective[J]. Journal of Cleaner Production, 2018, 194:138-149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3de718bedebe07b5784a182fe560863d
[20]罗华伟, 姜雅勤.自然资源资产生态价值计量:理论与案例[J].会计之友, 2019, (22):104-110 http://d.old.wanfangdata.com.cn/Periodical/hbhjjlw201807002
LUO H W, JIANG Y Q. Measurement of ecological value of natural resource assets:Theory and case[J]. Friends of Accounting, 2019, (22):104-110 http://d.old.wanfangdata.com.cn/Periodical/hbhjjlw201807002
[21]CHERUBINI F, BIRD N D, COWIE A, et al. Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems:Key issues, ranges and recommendations[J]. Resources, Conservation and Recycling, 2009, 53(8):434-447 http://cn.bing.com/academic/profile?id=85a9c5384a8b8ecfdbe6bbe3b9df3d53&encoded=0&v=paper_preview&mkt=zh-cn
[22]SOAM S, BORJESSON P, SHARMA P K, et al. Life cycle assessment of rice straw utilization practices in India[J]. Bioresource Technology, 2017, 228:89-98 http://cn.bing.com/academic/profile?id=de440589ac6248adae922f10effc99e7&encoded=0&v=paper_preview&mkt=zh-cn
[23]王艳, 郝炜伟, 程轲, 等.秸秆露天焚烧典型大气污染物排放因子[J].中国环境科学, 2018, 38(6):2055-2061 http://d.old.wanfangdata.com.cn/Periodical/zghjkx201806007
WANG Y, HAO W W, CHENG K, et al. Emission factors of typical air pollutants from open burning of crop straws[J]. China Environmental Science, 2018, 38(6):2055-2061 http://d.old.wanfangdata.com.cn/Periodical/zghjkx201806007
[24]王俊芳, 骆仲泱, 华晓宇, 等.农作物秸秆露天焚烧污染物排放特性研究[J].热力发电, 2017, 46(6):14-20 http://d.old.wanfangdata.com.cn/Periodical/rlfd201706003
WANG J F, LUO Z Y, HUA X Y, et al. Pollutant emission characteristics of crop straws during opening burning[J]. Thermal Power Generation, 2017, 46(6):14-20 http://d.old.wanfangdata.com.cn/Periodical/rlfd201706003
[25]杨夏捷, 鞠园华, 郭福涛, 等.中国亚热带地区农作物秸秆露天燃烧污染物排放清单[C]//2017中国环境科学学会科学与技术年会论文集.厦门: 中国环境科学学会, 2017
YANG X J, JU Y H, GUO F T, et al. Pollutant emission list for open burning of crop straws in subtropical regions of China[C]//2017 Annual Meeting of Science and Technology of Chinese Environmental Science Society. Xiamen: Chinese Society of Environmental Sciences, 2017
[26]孙剑峰.中国农作物秸秆露天燃烧排放大气污染物的实验室模拟[D].济南: 山东大学, 2016
SUN J F. A laboratory study on emission characteristics of gaseous and particulate pollutants emitted from agricultural crop residue open burning in China[D]. Jinan: Shandong University, 2016
[27]刘丽华, 蒋静艳, 宗良纲.农业残留物燃烧温室气体排放清单研究:以江苏省为例[J].环境科学, 2011, 32(5):1242-1248 http://d.old.wanfangdata.com.cn/Periodical/hjkx201105005
LIU L H, JIANG J Y, ZONG L G. Emission inventory of greenhouse gases from agricultural residues combustion:A case study of Jiangsu Province[J]. Environmental Science, 2011, 32(5):1242-1248 http://d.old.wanfangdata.com.cn/Periodical/hjkx201105005
[28]陈俊武, 陈香生.中国中长期碳减排战略目标初探(Ⅱ)——中国煤炭消费过程的碳排放及减排措施[J].中外能源, 2011, 16(6):1-11 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwny201106001
CHEN J W, CHEN X S. A preliminary study on China's long and medium-term strategic goals for reducing carbon emissions (Ⅱ)-Carbon emissions during coal consumption in China and solutions[J]. Sino-Global Energy, 2011, 16(6):1-11 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwny201106001
[29]颜永毫, 王丹丹, 郑纪勇.生物炭对土壤N2O和CH4排放影响的研究进展[J].中国农学通报, 2013, 29(8):140-146 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201308027
YAN Y H, WANG D D, ZHENG J Y. Advances in effects of biochar on the soil N2O and CH4 emissions[J]. Chinese Agricultural Science Bulletin, 2013, 29(8):140-146 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201308027
[30]ZHANG A F, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China[J]. Agriculture, Ecosystems & Environment, 2010, 139(4):469-475 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6974cb61454bad179b35f97ba3ef9b96
[31]程功, 刘廷玺, 李东方, 等.生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响[J].中国生态农业学报(中英文), 2019, 27(7):1004-1014 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201907003
CHENG G, LIU T X, LI D F, et al. Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7):1004-1014 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201907003
[32]陈静, 张建国, 赵英, 等.秸秆和生物炭添加对关中地区玉米-小麦轮作农田温室气体排放的影响[J].水土保持研究, 2018, 25(5):170-178
CHEN J, ZHANG J G, ZHAO Y, et al. Effects of straw and biochar amendment on greenhouse gases emission in wheat-maize rotation cropland in Guanzhong Area[J]. Research of Soil and Water Conservation, 2018, 25(5):170-178
[33]张斌, 刘晓雨, 潘根兴, 等.施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J].中国农业科学, 2012, 45(23):4844-4853 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201223011
ZHANG B, LIU X Y, PAN G X, et al. Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles[J]. Scientia Agricultura Sinica, 2012, 45(23):4844-4853 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201223011
[34]屈忠义, 高利华, 李昌见, 等.秸秆生物炭对玉米农田温室气体排放的影响[J].农业机械学报, 2016, 47(12):111-118 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201612015
QU Z Y, GAO L H, LI C J, et al. Impacts of straw biochar on emission of greenhouse gas in maize field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12):111-118 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201612015
[35]王红彦, 王亚静, 高春雨, 等.基于LCA的秸秆沼气集中供气工程环境影响评价[J].农业工程学报, 2017, 33(21):237-243 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201721029
WANG H Y, WANG Y J, GAO C Y, et al. Environment impact evaluation of straw biogas project for central gas supply based on LCA[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21):237-243 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201721029
[36]孙宁, 王亚静, 高春雨, 等.秸秆收储运成本分析——以河南省为例[J].中国农业资源与区划, 2018, 39(5):91-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=675626572
SUN N, WANG Y J, GAO C Y, et al. Cost analysis of straw collection, storage and transportation-A case study of Henan Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(5):91-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=675626572
[37]唐伟, 何平, 杨强, 等.基于IVE模型和大数据分析的杭州市道路移动源主要温室气体排放清单研究[J].环境科学学报, 2018, 38(4):1368-1376 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201804011
TANG W, HE P, YANG Q, et al. Study on greenhouse gas emission inventory of road source in Hangzhou based on IVE model and large data analysis[J]. Acta Scientiae Circumstantiae, 2018, 38(4):1368-1376 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201804011
[38]李越胜, 卢伟业, 赵静波, 等.基于BP神经网络和激光诱导击穿光谱的燃煤热值快速测量方法研究[J].光谱学与光谱分析, 2017, 37(8):2575-2579 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201708044
LI Y S, LU W Y, ZHAO J B, et al. Detection of caloric value of coal using laser-induced breakdown spectroscopy combined with BP neural networks[J]. Spectroscopy and Spectral Analysis, 2017, 37(8):2575-2579 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201708044
[39]吴谋远, 殷冬青, 何春蕾, 等.我国需加快推行天然气热值计量计价改革[J].国际石油经济, 2018, 26(4):38-41 http://d.old.wanfangdata.com.cn/Periodical/gjsyjj201804006
WU M Y, YIN D Q, HE C L, et al. Accelerating the reform of the measurement and pricing of natural gas calorific value in China[J]. International Petroleum Economics, 2018, 26(4):38-41 http://d.old.wanfangdata.com.cn/Periodical/gjsyjj201804006
[40]刘胜强, 毛显强, 邢有凯.中国新能源发电生命周期温室气体减排潜力比较和分析[J].气候变化研究进展, 2012, 8(1):48-53 http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201201008
LIU S Q, MAO X Q, XING Y K. Estimation and comparison of greenhouse gas mitigation potential of new energy by life cycle assessment in China[J]. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(1):48-53 http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201201008
[41]陈欣, 刘延.中国二氧化碳影子价格估算及与交易价格差异分析——基于二次型方向性距离产出函数[J].生态经济, 2018, 34(6):14-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=675343104
CHEN X, LIU Y. Estimation of China's carbon dioxide shadow price and analysis of the difference in transaction price:Output function based on quadratic directional distance[J]. Ecological Economy, 2018, 34(6):14-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=675343104
[42]WEI C, NI J L, DU L M. Regional allocation of carbon dioxide abatement in China[J]. China Economic Review, 2012, 23(3):552-565 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ecf202446aff9f21dca735976d2ad04a
[43]陈诗一.工业二氧化碳的影子价格:参数化和非参数化方法[J].世界经济, 2010, 33(8):93-111 http://d.old.wanfangdata.com.cn/Periodical/glsj201807004
CHEN S Y. Shadow price of industrial carbon dioxide:Parametric and nonparametric approach[J]. The Journal of World Economy, 2010, 33(8):93-111 http://d.old.wanfangdata.com.cn/Periodical/glsj201807004
[44]YUAN P, LIANG W B, CHENG S. The margin abatement costs of CO2 in Chinese industrial sectors[J]. Energy Procedia, 2012, 14:1792-1797
[45]WU L P, CHEN Y, FEYLIZADEH M R. Study on the estimation, decomposition and application of China's provincial carbon marginal abatement costs[J]. Journal of Cleaner Production, 2019, 207:1007-1022 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=812d06aac3db029e14208b425b1b6a85

相关话题/生态 资源 化工 生物 技术