删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选

本站小编 Free考研考试/2022-01-01

连盈,
卢娟,
胡成梅,
牛胤全,
史雨刚,
杨进文,
王曙光,
张文俊,
孙黛珍,
山西农业大学农学院 太谷 030801
基金项目: 国家科技重大专项2018ZX0800917B
山西省自然科学基金201901D111228
山西省重点研发计划项目201803D221008-3

详细信息
作者简介:连盈, 主要研究方向为作物遗传育种。E-mail:lianyingnxy@163.com
通讯作者:孙黛珍, 主要研究方向为作物分子育种。E-mail:sdz64@126.com
中图分类号:S515

计量

文章访问数:503
HTML全文浏览量:5
PDF下载量:459
被引次数:0
出版历程

收稿日期:2019-12-03
录用日期:2020-01-30
刊出日期:2020-04-01

Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties

LIAN Ying,
LU Juan,
HU Chengmei,
NIU Yinquan,
SHI Yugang,
YANG Jinwen,
WANG Shuguang,
ZHANG Wenjun,
SUN Daizhen,
College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
Funds: the National Science and Technology Major Project of China2018ZX0800917B
the Natural Science Foundation of Shanxi Province201901D111228
the Key Research & Development Program of Shanxi Province201803D221008-3

More Information
Corresponding author:SUN Daizhen, E-mail:sdz64@126.com


摘要
HTML全文
(5)(4)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:筛选和培育耐低氮能力强的作物品种,是提高作物氮素利用效率,减少氮肥施用量,降低环境污染的有效措施。本研究以45份谷子品种为试材,采用水培的方法,在低氮(0.1 mmol·L-1)和正常氮(5 mmol·L-1)条件下,测定苗高、根长和根数等22个氮效率相关指标,采用综合耐低氮系数法以及基于主成分分析的隶属函数法评价参试谷子品种的耐低氮性。结果表明,与正常氮条件相比,低氮胁迫下,谷子苗期根长、根冠比、地上部氮素生理效率、地下部氮素生理效率、单株氮素生理效率有不同程度提高,其余17个指标都有不同程度降低。两种评价方法均根据45个谷子品种的耐低氮能力将其划分为强耐低氮型、耐低氮型、中间型、较敏感型和敏感型5类。筛选出耐低氮性较强的品种5份,编号分别为11、14、17、35和39。利用GGE双标图对品种-耐低氮相关指标的分析表明,编号39和14的耐低氮品种主要耐低氮性状为地下部干重、地下部鲜重、根长;编号为11、35和17的耐低氮品种主要耐低氮性状为地上部鲜重、叶片数、叶宽、叶长、单株氮累积量、地上部氮累积量、单株干质量、地上部干重、地下部氮累积量、根数、苗高和SPAD。可见不同谷子品种的耐低氮机制存在一定差异,研究结果可为谷子耐低氮品种的选育提供材料基础。
关键词:谷子/
低氮胁迫/
综合耐低氮系数/
主成分分析/
隶属函数法/
GGE双标图
Abstract:Screening and cultivating low-nitrogen-tolerant crop varieties can be used as an effective measure for increasing the nitrogen-use efficiency of plants, reducing nitrogen fertilizer use, as well as limiting environmental pollution during cultivation. In the present study, 45 foxtail millet varieties were grown in different nitrogen conditions, low nitrogen (0.1 mmol·L-1) and normal nitrogen (5 mmol·L-1), using hydroponic methods. Nitrogen efficiency of plants was subsequently measured based on 22 indicators about growth, biomass, nitrogen content, nitrogen accumulation and physiology efficiency. The low nitrogen tolerance of the tested foxtail millet varieties was evaluated by using the comprehensive low nitrogen tolerance coefficient method and the membership function method based on principal component analysis. The results showed that foxtail millet seedlings exposed to low nitrogen stress demonstrated varying degrees of improvement compared to seedlings grown in normal nitrogen condition for root length, root-shoot ratio, number of root; and root, shoot, and plant nitrogen physiology efficiency. The remaining 17 indicators demonstrated different levels of reduction under low nitrogen stress. Forty-five foxtail millet varieties were subsequently divided into five categories (strong resistant, resistant, medium resistant, sensitive, and highly sensitive) for screening; five varieties with relatively strong low nitrogen tolerance were screened (varieties 11, 14, 17, 35, and 39). A GGE double plot was used to analyze the variety-low nitrogen tolerance related indexes. The predominant low nitrogen tolerance traits of low nitrogen tolerant varieties 39 and 14 were dry weight of root, fresh weight of root, and root length; while varieties 11, 35, and 17 were identified as having traits fresh weight of shoot, leaf number, leaf width, leaf length, nitrogen accumulation of plant, nitrogen accumulation of shoot, dry weight of plant, dry weight of shoot, nitrogen accumulation of root, root number, seedling height, and SPAD. Our results suggest that there are some differences in the low nitrogen tolerance mechanisms of different millet varieties. These findings provide a material basis for the breeding of foxtail millet varieties with low nitrogen resistance.
Key words:Foxtail millet/
Low nitrogen stress/
Comprehensive low nitrogen tolerance coefficient/
Principal component analysis/
Subordinate function/
GGE double plot

HTML全文


图1谷子苗期各性状耐低氮系数的相关性
*P < 0.05; **P < 0.01;***P < 0.001. RL:根长; SH:苗高; RN:根数; LL:叶长; LW:叶宽; LN:叶片数; FWR:地下部鲜重; FWS:地上部鲜重; DWR:地下部干重; DWS:地上部干重; NCS:地上部氮含量; NCR:地下部氮含量; NAS:地上部氮累积量; NAR:地下部氮累积量; NES:地上部氮素生理效率; NER:地下部氮素生理效率; DWP:单株干质量; R-S:根冠比; NCP:单株氮含量; NAP:单株氮累积量; NEP:单株氮素生理效率。
Figure1.Correlation analysis of low nitrogen tolerance coefficients of each trait of foxtail millet seedlings
RL: root length; SH: seedling height; RN: roots number; LL: leaf length; LW: leaf width; LN: leaves number; FWR: fresh weight of root; FWS: fresh weight of shoot; DWR: dry weight of root; DWS: dry weight of shoot; NCS: nitrogen content of shoot; NCR: nitrogen content of root; NAS: nitrogen accumulation of shoot; NAR: nitrogen accumulation of root; NES: nitrogen physiology efficiency of shoot; NER: nitrogen physiology efficiency of root; DWP: dry weight of plant; R-S: root-shoot ratio of dry weight; NCP: nitrogen content of plant; NAP: nitrogen accumulation of plant; NEP: nitrogen physiology efficiency of plant.


下载: 全尺寸图片幻灯片


图2基于综合耐低氮系数的谷子品种耐低氮性
Figure2.Varieties numbers of different low nitrogen tolerance types of foxtail millet based on comprehensive low nitrogen tolerance coefficients
HS: highly sensitive; S: sensitive; MR: medium resistant; R: resistant; SR: strongly resistant.


下载: 全尺寸图片幻灯片


图3谷子品种的综合耐低氮系数(X值)与苗期性状的相关性
1、2、3、…、45为45份谷子品种编号。RL:根长; SH:苗高; RN:根数; LL:叶长; LW:叶宽; LN:叶片数; FWR:地下部鲜重; FWS:地上部鲜重; DWR:地下部干重; DWS:地上部干重; R-S:根冠比; DWP:单株干质量; NCS:地上部氮含量; NCR:地下部氮含量; NCP:单株氮含量; NAS:地上部氮累积量; NAR:地下部氮累积量; NAP:单株氮累积量; NES:地上部氮素生理效率; NER:地下部氮素生理效率; NEP:单株氮素生理效率。
Figure3.Correlation between comprehensive low nitrogen tolerance coefficients (X) and seedling traits of foxtail millet varieties
1, 2, 3, …, 45 are the numbers of 45 millet varieties. RL: root length; SH: seedling height; RN: roots number; LL: leaf length; LW: leaf width; LN: leaves number; FWR: fresh weight of root; FWS: fresh weight of shoot; DWR: dry weight of root; DWS: dry weight of shoot; R-S: root-shoot ratio of dry weight; DWP: dry weight of plant; NCS: nitrogen content of shoot; NCR: nitrogen content of root; NCP: nitrogen content of plant; NAS: nitrogen accumulation of shoot; NAR: nitrogen accumulation of root; NAP: nitrogen accumulation of plant; NES: nitrogen physiology efficiency of shoot; NER: nitrogen physiology efficiency of root; NEP: nitrogen physiology efficiency of plant.


下载: 全尺寸图片幻灯片


图4不同谷子品种苗期耐低氮性综合评价聚类分析结果
Figure4.Cluster analysis results of comprehensive evaluation of low nitrogen tolerance of seedlings of different foxtail millet varieties


下载: 全尺寸图片幻灯片


图5不同谷子品种的耐低氮综合评价(D)值与苗期性状的相关性
1、2、3、…、45为45份谷子品种的编号。RL:根长; SH:苗高; RN:根数; LL:叶长; LW:叶宽; LN:叶片数; FWR:地下部鲜重; FWS:地上部鲜重; DWR:地下部干重; DWS:地上部干重; R-S:根冠比; DWP:单株干质量; NCS:地上部氮含量; NCR:地下部氮含量; NCP:单株氮含量; NAS:地上部氮累积量; NAR:地下部氮累积量; NAP:单株氮累积量; NES:地上部氮素生理效率; NER:地下部氮素生理效率; NEP:单株氮素生理效率。
Figure5.Correlation between comprehensive evaluation (D) value and seedling traits of foxtail millet varieties
1, 2, 3, …, 45 are the numbers of 45 millet varieties. RL: root length; SH: seedling height; RN: roots number; LL: leaf length; LW: leaf width; LN: leaves number; FWR: fresh weight of root; FWS: fresh weight of shoot; DWR: dry weight of root; DWS: dry weight of shoot; R-S: root-shoot ratio of dry weight; DWP: dry weight of plant; NCS: nitrogen content of shoot; NCR: nitrogen content of root; NCP: nitrogen content of plant; NAS: nitrogen accumulation of shoot; NAR: nitrogen accumulation of root; NAP: nitrogen accumulation of plant; NES: nitrogen physiology efficiency of shoot; NER: nitrogen physiology efficiency of root; NEP: nitrogen physiology efficiency of plant.


下载: 全尺寸图片幻灯片

表1两种供氮水平下谷子苗期耐低氮相关指标值和耐低氮系数
Table1.Relative traits values and coefficients of low nitrogen tolerance of foxtail millet seedlings under two nitrogen treatments
耐低氮指标
Low nitrogen tolerance trait
正常氮处理
Normal nitrogen treatment
低氮处理
Low nitrogen treatment
耐低氮系数
Low nitrogen tolerance coefficient
平均值
Mean
标准差
SD
CV
(%)
平均值
Mean
标准差
SD
CV
(%)
平均值
Mean
标准差
SD
CV
(%)
SPAD 30.071A 3.073 10.219 17.991B 3.066 17.044 0.601 0.096 15.904
根长Root length (cm) 13.193B 2.137 16.201 14.771A 2.769 18.743 1.120 0.225 20.044
苗高Seedling height (cm) 35.311A 4.979 14.101 22.936B 5.125 22.343 0.651 0.115 17.691
根数Roots number 12.496A 1.849 14.794 8.752B 1.290 14.735 0.706 0.091 12.881
叶长Leaf length (cm) 21.466A 3.122 14.546 11.510B 2.566 22.291 0.539 0.104 19.224
叶宽Leaf width (cm) 0.946A 0.137 14.528 0.648B 0.169 26.144 0.685 0.144 20.974
叶片数Leaves number 5.822A 0.423 7.257 4.633B 0.548 11.828 0.796 0.081 10.164
地下部鲜重Root fresh weight (g) 0.258A 0.090 35.004 0.103B 0.049 46.989 0.423 0.182 43.050
地上部鲜重Shoot fresh weight (g) 1.022A 0.306 29.903 0.376B 0.177 47.095 0.375 0.144 38.409
地下部干重Root dry weight (g) 0.028A 0.010 35.182 0.016B 0.006 36.079 0.589 0.198 33.708
地上部干重Shoot dry weight (g) 0.141A 0.036 25.847 0.064B 0.025 39.387 0.466 0.157 33.557
根冠比Root-shoot ratio of dry weight 0.198B 0.040 20.332 0.252A 0.030 23.801 1.298 0.280 21.600
单株干质量Plant dry weight (g) 0.169A 0.045 26.441 0.080B 0.865 37.536 0.485 0.156 32.114
地上部氮含量
Shoot nitrogen content (mg·g-1)
7.210A 1.464 20.302 3.607B 0.630 23.979 0.510 0.120 23.462
地下部氮含量
Root nitrogen content (mg·g-1)
5.249A 1.857 35.382 3.187B 0.737 19.780 0.641 0.159 24.754
单株氮含量Plant nitrogen content (mg·g-1) 6.885A 1.360 19.753 3.511B 0.136 20.977 0.521 0.113 21.640
地上部氮累积量
Shoot nitrogen accumulation (mg)
1.004A 0.329 32.752 0.233B 0.019 58.389 0.241 0.108 44.805
地下部氮累积量
Root nitrogen accumulation (mg)
0.140A 0.049 34.689 0.050B 0.151 39.023 0.374 0.148 39.591
单株氮累积量
Plant nitrogen accumulation (mg)
1.144A 0.359 31.400 0.282B 0.068 53.508 0.255 0.107 41.737
地上部氮素生理效率
Shoot nitrogen physiology efficiency (mg·mg-1)
145.935B 30.546 20.931 295.467A 68.293 23.114 2.067 0.478 23.114
地下部氮素生理效率
Root nitrogen physiology efficiency (mg·mg-1)
205.222B 48.428 23.598 334.170A 121.855 36.465 1.716 0.761 44.337
单株氮素生理效率
Plant nitrogen physiology efficiency (mg·mg-1)
152.123B 30.740 20.207 298.643A 59.878 20.050 2.006 0.427 21.275
表中同行不同大写字母表示正常氮处理和低氮处理间差异极显著(P < 0.01)。Values of normal and low nitrogen treatments followed by different capital letters within the same line are significantly different at 0.01 level.


下载: 导出CSV
表2不同谷子品种苗期各性状的耐低氮系数
Table2.Low nitrogen tolerance coefficients of seedling traits of different foxtail millet varieties


表3谷子品种苗期主要性状主成分分析结果
Table3.Principal component analysis of seedling traits of foxtail millet varieties
指标Trait PC1 PC2 PC3 PC4
SPAD 0.050 -0.083 0.030 0.256
根长Root length 0.037 0.111 0.066 0.313
苗高Seedling height 0.086 0.038 0.046 -0.064
根数Roots number 0.076 0.049 0.034 -0.078
叶长Leaf length 0.079 -0.001 0.027 0.066
叶宽Leaf width 0.070 -0.013 -0.037 0.043
叶片数Leaves number 0.053 0.011 0.094 -0.236
地下部鲜重Root fresh weight 0.055 0.129 -0.109 0.185
地上部鲜重Shoot fresh weight 0.093 0.034 0.054 -0.115
地下部干重Root dry weight 0.067 0.150 0.002 0.151
地上部干重Shoot dry weight 0.089 0.076 0.034 -0.132
单株干质量Plant dry weight 0.088 0.092 0.032 -0.086
地上部氮含量Shoot nitrogen content 0.051 -0.177 0.068 0.128
地下部氮含量Root nitrogen content 0.020 -0.066 -0.414 -0.072
单株氮含量Plant nitrogen content 0.055 -0.179 -0.026 0.093
地上部氮累积量Shoot nitrogen accumulation 0.096 -0.029 0.067 -0.064
地下部氮累积量Root nitrogen accumulation 0.069 0.085 -0.251 0.069
单株氮累积量Plant nitrogen accumulation 0.098 -0.015 0.019 -0.048
地上部氮素生理效率Shoot nitrogen physiology efficiency -0.051 0.175 -0.074 -0.136
地下部氮素生理效率Root nitrogen physiology efficiency -0.021 0.031 0.414 0.054
单株氮素生理效率Plant nitrogen physiology efficiency -0.055 0.177 0.021 -0.099
根冠比Root-shoot ratio of dry weight -0.037 0.098 -0.029 0.380
特征值Eigenvalue 10.028 4.425 2.179 1.826
贡献率Contribution rate (%) 45.580 20.114 9.906 8.299
累计贡献率Accumulated contribution (%) 45.580 65.693 75.599 83.898


下载: 导出CSV
表4基于两种评价方法的谷子品种耐低氮性评价结果的对比
Table4.Comparison of evaluation results of low nitrogen tolerance of different foxtail millet varieties based on two evaluation methods
耐低氮类型
Type of low nitrogen tolerance
综合耐低氮系数法
Comprehensive low nitrogen tolerance coefficient method
综合评价D值法
D value method for comprehensive evaluation
敏感型Highly sensitive 45, 3, 43, 28 18, 45, 8, 2, 3, 10, 24, 28, 5, 25
较敏感型Sensitive 5, 2, 25, 29, 24, 36, 40, 27, 33, 44, 23, 37, 16, 13, 20, 18, 26, 30 43, 13, 27, 20, 6, 30, 21, 44, 9, 1, 29, 16, 12, 40, 32, 33, 37, 23
中间型Medium resistant 10, 38, 1, 8, 32, 41, 31, 7, 34, 15, 4, 21, 9, 12, 6 7, 34, 19, 31, 42, 22, 26, 15, 36, 4, 38, 41
耐低氮型Resistant 42, 22, 19, 17, 35, 14 17, 35, 14
强耐低氮型Strongly resistant 11, 39 11, 39


下载: 导出CSV

参考文献(41)
[1]路海东, 薛吉全, 马国胜, 等.低氮胁迫对不同基因型夏玉米源库性状和灌浆特性的影响[J].应用生态学报, 2010, 21(5):1277-1282 http://d.old.wanfangdata.com.cn/Periodical/yystxb201005029
LU H D, XUE J Q, MA G S, et al. Effects of low nitrogen stress on source-sink characters and grain-filling traits of different genotypes summer maize[J]. Chinese Journal of Applied Ecology, 2010, 21(5):1277-1282 http://d.old.wanfangdata.com.cn/Periodical/yystxb201005029
[2]PENG S B, BURESH R J, HUANG J L, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J]. Agronomy for Sustainable Development, 2010, 30(3):649-656 doi: 10.1051/agro/2010002
[3]JU C X, BURESH R J, WANG Z Q, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field Crops Research, 2015, 175:47-55 doi: 10.1016/j.fcr.2015.02.007
[4]徐志远, 秦智伟, 周秀艳.氮肥利用研究现状及培育耐低氮胁迫蔬菜品种的探讨[J].东北农业大学学报, 2007, 38(5):706-710 doi: 10.3969/j.issn.1005-9369.2007.05.030
XU Z Y, QIN Z W, ZHOU X Y. Discussion on nitrogenous fertilizer using and breeding nitrogen stress tolerant vegetables[J]. Journal of Northeast Agricultural University, 2007, 38(5):706-710 doi: 10.3969/j.issn.1005-9369.2007.05.030
[5]郭战玲, 沈阿林.小麦氮营养效率的种间差异与机理研究进展[J].河南农业科学, 2004, (2):31-35 doi: 10.3969/j.issn.1004-3268.2004.02.011
GUO Z L, SHEN A L. Research advance of interspecies difference and mechanism for N nutrition efficiency in wheat[J]. Journal of Henan Agricultural Sciences, 2004, (2):31-35 doi: 10.3969/j.issn.1004-3268.2004.02.011
[6]李宝刚, 谭超, 何容信.化肥对环境的污染及其防治[J].现代农业科技, 2009, (4):193-194 doi: 10.3969/j.issn.1007-5739.2009.04.141
LI B G, TAN C, HE R X. Environmental pollution caused by chemical fertilizers and its prevention[J]. Modern Agricultural Sciences and Technology, 2009, (4):193-194 doi: 10.3969/j.issn.1007-5739.2009.04.141
[7]TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327(5967):818-822 doi: 10.1126/science.1183700
[8]GOOD A G, SHRAWAT A K, MUENCH D G, et al. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J]. Trends in Plant Science, 2004, 9(12):597-605 doi: 10.1016/j.tplants.2004.10.008
[9]布哈丽且木·阿不力孜, 白志刚, 黄洁, 等.氮肥运筹对不同类型水稻产量和氮素吸收的影响[J].中国稻米, 2018, 24(4):64-67 doi: 10.3969/j.issn.1006-8082.2018.04.015
BUHAILIQEM ABLIZ, BAI Z G, HUANG J, et al. Effects of nitrogen fertilizer on yield and nitrogen uptake of different types of rice[J]. China Rice, 2018, 24(4):64-67 doi: 10.3969/j.issn.1006-8082.2018.04.015
[10]姜琪, 陈志伟, 刘成洪, 等.大麦地方品种苗期耐低氮筛选和鉴定指标的研究[J].华北农学报, 2019, 34(1):148-155 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201901019
JIANG Q, CHEN Z W, LIU C H, et al. Screening and identification indices of low-nitrogen tolerance for barley landraces at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1):148-155 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201901019
[11]CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523):486-489 doi: 10.1038/nature13609
[12]HAEGELE J W, COOK K A, NICHOLS D M, et al. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades[J]. Crop Science, 2013, 53(4):1256-1268 doi: 10.2135/cropsci2012.07.0429
[13]李丹丹, 宗俊勤, 陈静波, 等.耐低氮假俭草种质筛选[J].草业科学, 2018, 35(10):2463-2470 doi: 10.11829/j.issn.1001-0629.2018-0113
LI D D, ZONG J Q, CHEN J B, et al. Screening of Eremochloa ophiuroides germplasm for tolerance to low-nitrogen stress[J]. Pratacultural Science, 2018, 35(10):2463-2470 doi: 10.11829/j.issn.1001-0629.2018-0113
[14]刘婷婷, 樊明寿, 李春俭.不同氮效率玉米自交系对氮素供应的反应[J].华北农学报, 2005, 20(3):83-86 doi: 10.3321/j.issn:1000-7091.2005.03.021
LIU T T, FAN M S, LI C J. Responses of maize inbred lines with contrasting N efficiency to different nitrogen supplies[J]. Acta Agriculturae Boreali-Sinica, 2005, 20(3):83-86 doi: 10.3321/j.issn:1000-7091.2005.03.021
[15]韩璐, 张薇.棉花苗期氮营养高效品种筛选[J].中国农学通报, 2011, 27(1):84-88 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201101016
HAN L, ZHANG W. Screening of cotton varieties with high nitrogen efficiency at seedling stage[J]. Chinese Agricultural Science Bulletin, 2011, 27(1):84-88 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201101016
[16]徐福荣, 汤翠凤, 余藤琼, 等.利用叶绿素仪SPAD值筛选耐低氮水稻种质[J].分子植物育种, 2005, 3(5):659-700 doi: 10.3969/j.issn.1672-416X.2005.05.018
XU F R, TANG C F, YU T Q, et al. Screening of rice germplasms for tolerance to low-nitrogen using SPAD-value by chlorophyll meter[J]. Molecular Plant Breeding, 2005, 3(5):695-700 doi: 10.3969/j.issn.1672-416X.2005.05.018
[17]杜保见, 郜红建, 常江, 等.小麦苗期氮素吸收利用效率差异及聚类分析[J].植物营养与肥料学报, 2014, 20(6):1349-1357 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201406006
DU B J, GAO H J, CHANG J, et al. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6):1349-1357 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201406006
[18]陈志伟, 邹磊, 陆瑞菊, 等.不同基因型大麦苗期耐低氮性状与产量性状的相关性[J].麦类作物学报, 2010, 30(1):158-162 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201001031
CHEN Z W, ZOU L, LU R J, et al. Study on the relationship between the traits for low-nitrogen tolerance of different barley genotypes at seedling stage and grain yield[J]. Journal of Triticeae Crops, 2010, 30(1):158-162 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201001031
[19]陈志伟, 何婷, 陆瑞菊, 等.不同基因型大麦苗期对低氮胁迫的生物学响应[J].上海农业学报, 2010, 26(1):28-32 doi: 10.3969/j.issn.1000-3924.2010.01.008
CHEN Z W, HE T, LU R J, et al. Biological responses of different-genotype barleys to low nitrogen stress at seedling stage[J]. Acta Agriculturae Shanghai, 2010, 26(1):28-32 doi: 10.3969/j.issn.1000-3924.2010.01.008
[20]杨丽娜, 胡宏亮, 朱波, 等.西藏野生大麦与栽培大麦氮利用效率的基因型差异[J].浙江大学学报:农业与生命科学版, 2014, 40(2):155-164 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201402006
YANG L N, HU H L, ZHU B, et al. Genotypic variations of N use efficiency in Tibetan wild and cultivated barleys[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2014, 40(2):155-164 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201402006
[21]强欣.大麦不同氮利用效率品种筛选及GS基因的生物信息学分析[D].兰州: 甘肃农业大学, 2015
QIANG X. The varieties screening of nitrogen use efficiency in Hordeum vulgare and bioinformatics analysis of GS gene[D]. Lanzhou: Gansu Agricultural University, 2015
[22]梁兴萍, 冯唯欣, 秦鹏飞, 等.谷子耐低氮品种的筛选[J].山西农业科学, 2016, 44(12):1747-1750 doi: 10.3969/j.issn.1002-2481.2016.12.01
LIANG X P, FENG W X, QIN P F, et al. Screening of resistance to low nitrogen varieties of millet[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(12):1747-1750 doi: 10.3969/j.issn.1002-2481.2016.12.01
[23]黄兴东.谷子耐低氮胁迫品种资源的筛选与鉴定[D].晋中: 山西农业大学, 2017
HUANG X D. Screening and identification of resistance to low nitrogen varieties of foxtail millet[D]. Jinzhong: Shanxi Agricultural University, 2017
[24]时丽冉, 郝洪波, 李明哲.不同基因型谷子幼苗期对低氮胁迫的响应[J].作物杂志, 2014, (4):75-79 http://d.old.wanfangdata.com.cn/Periodical/zwzz201404016
SHI L R, HAO H B, LI M Z, et al. Biological response of in seedling stage different foxtail millet genotypes to low nitrogen stress[J]. Crops, 2014, (4):75-79 http://d.old.wanfangdata.com.cn/Periodical/zwzz201404016
[25]翟荣荣, 余鹏, 叶胜海, 等.浙江省晚粳稻耐低氮品种的筛选和评价[J].浙江大学学报:农业与生命科学版, 2016, 42(5):565-572 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201605007
ZHAI R R, YU P, YE S H, et al. Screening and comprehensive evaluation of low nitrogen tolerance of Zhejiang photosensitive japonica rice cultivars[J]. Journal of Zhejiang University:Agriculture and Life Sciences, 2016, 42(5):565-572 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201605007
[26]贵会平, 董强, 张恒恒, 等.棉花苗期耐低氮基因型初步筛选[J].棉花学报, 2018, 30(4):326-337 http://d.old.wanfangdata.com.cn/Periodical/mhxb201804005
GUI H P, DONG Q, ZHANG H H, et al. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage[J]. Cotton Science, 2018, 30(4):326-337 http://d.old.wanfangdata.com.cn/Periodical/mhxb201804005
[27]李梁, 杜志钊, 高润红, 等.不同地区大麦品种苗期耐低氮性及聚类分析[J].上海农业学报, 2013, 29(1):10-14 doi: 10.3969/j.issn.1000-3924.2013.01.003
LI L, DU Z B, GAO R H, et al. Low-nitrogen tolerances of different-region barley varieties at seedling stage and their cluster analysis[J]. Acta Agriculturae Shanghai, 2013, 29(1):10-14 doi: 10.3969/j.issn.1000-3924.2013.01.003
[28]陈娇, 谢小玉, 张小短, 等.甘蓝型油菜苗期抗旱性鉴定及综合抗旱指标筛选[J].中国油料作物学报, 2019, 41(5):713-722 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201905008
CHEN J, XIE X Y, ZHANG X D, et al. Seedling drought resistance and parameter screening of rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(5):713-722 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201905008
[29]王贺正, 李艳, 马均, 等.水稻苗期抗旱性指标的筛选[J].作物学报, 2007, 33(9):1523-1529 doi: 10.3321/j.issn:0496-3490.2007.09.020
WANG H Z, LI Y, MA J, et al. Screening indexes of drought resistance during seedling stage in rice[J]. Acta Agronomica Sinica, 2007, 33(9):1523-1529 doi: 10.3321/j.issn:0496-3490.2007.09.020
[30]李丹丹, 田梦雨, 崔昊, 等.小麦苗期耐低氮胁迫的基因型差异[J].麦类作物学报, 2009, 29(2):222-227 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb200902008
LI D D, TIAN M Y, CUI H, et al. Genotypic differences of low nitrogen tolerance at wheat early stage[J]. Journal of Triticeae Crops, 2009, 29(2):222-227 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb200902008
[31]裴雪霞, 王姣爱, 党建友, 等.耐低氮小麦基因型筛选指标的研究[J].小麦研究, 2007, 28(2):1-6 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb200701016
PEI X X, WANG J A, DANG J Y, et al. Study on screening index of low nitrogen tolerance wheat genotype[J]. Journal of Wheat Research, 2007, 28(2):1-6 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb200701016
[32]赵刚, 王淑英, 王勇, 等.不同冬小麦品种对氮素吸收利用效率的差异研究[J].华北农学报, 2010, 25(3):180-185 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201003038
ZHAO G, WANG S Y, WANG Y, et al. Study on the difference of nitrogen uptake efficiency in the different wheat varieties[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(3):180-185 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201003038
[33]王春萍, 张世才, 雷开荣, 等.辣椒苗期耐低氮指标与评价方法研究[J].园艺学报, 2017, 44(12):2318-2326 http://d.old.wanfangdata.com.cn/Periodical/yyxb201712008
WANG C P, ZHANG S C, LEI K R, et al. Studies of indexes and evaluation of low nitrogen tolerance of pepper at seedling stage[J]. Acta Horticulturae Sinica, 2017, 44(12):2318-2326 http://d.old.wanfangdata.com.cn/Periodical/yyxb201712008
[34]DIAZ C, SALIBA-COLOMBANI V, LOUDET O, et al. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2006, 47(1):74-83 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002747302
[35]裴雪霞, 王姣爱, 党建友, 等.耐低氮小麦基因型筛选指标的研究[J].植物营养与肥料学报, 2007, 13(1):93-98 doi: 10.3321/j.issn:1008-505X.2007.01.016
PEI X X, WANG J A, DANG J Y, et al. An approach to the screening index for low nitrogen tolerant wheat genotype[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(1):93-98 doi: 10.3321/j.issn:1008-505X.2007.01.016
[36]赵化田, 王瑞芳, 许云峰, 等.小麦苗期耐低氮基因型的筛选与评价[J].中国生态农业学报, 2011, 19(5):1199-1204 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110533&flag=1
ZHAO H T, WANG R F, XU Y F, et al. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1199-1204 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110533&flag=1
[37]崔世友, 缪亚梅, 史传怀, 等.氮高效水稻育种研究及展望[J].中国农业科技导报, 2006, 8(6):47-51 doi: 10.3969/j.issn.1008-0864.2006.06.010
CUI S Y, MIAO Y M, SHI C H, et al. Research and prospects of breeding for nitrogen efficiency in rice[J]. Review of China Agricultural Science and Technology, 2006, 8(6):47-51 doi: 10.3969/j.issn.1008-0864.2006.06.010
[38]徐海成, 尹燕枰, 蔡铁, 等.冬小麦拔节期不同茎蘖对低温胁迫的反应及抗冻性评价[J].应用生态学报, 2013, 24(8):2197-2204 http://d.old.wanfangdata.com.cn/Periodical/yystxb201308015
XU H C, YIN Y P, CAI T, et al. Responses of winter wheat tillers at different positions to low temperature stress at stem elongation stage and their freezing resistance evaluation[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2197-2204 http://d.old.wanfangdata.com.cn/Periodical/yystxb201308015
[39]张兴华, 薛吉全, 刘万锋, 等.不同玉米品种耐低氮能力鉴定与评价[J].西北农业学报, 2010, 19(8):65-68 doi: 10.3969/j.issn.1004-1389.2010.08.013
ZHANG X H, XUE J Q, LIU W F, et al. Screening and identification of low nitrogen tolerance in different maize hybrids[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(8):65-68 doi: 10.3969/j.issn.1004-1389.2010.08.013
[40]文琴.棉花钾高效品种(系)筛选及其生物学特性的研究[D].武汉: 华中农业大学, 2008
WEN Q. Screening and study on biological characteristics of cotton varieties (lines) tolerating to low potassium[D]. Wuhan: Huazhong Agricultural University, 2008
[41]李霞, 孙志伟, 吕川根, 等.田间杂交水稻单年单点5种不同逆境的批量筛选及聚类分析[J].中国生态农业学报, 2010, 18(3):528-534 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=10314&flag=1
LI X, SUN Z W, LYU C G, et al. Mass screening and cluster analysis for tolerance to stress of hybrid rice variety under field conditions[J]. Chinese Journal of Eco-Agriculture, 2010, 18(3):528-534 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=10314&flag=1

相关话题/生理 指标 综合 作物 质量