赵霞1,
张芮1,,,
王旺田2,
温文1
1.甘肃农业大学水利水电工程学院 兰州 730070
2.甘肃农业大学生命科学技术学院 兰州 730070
基金项目: 国家自然科学基金项目51769001
国家自然科学基金项目51569002
国家自然科学基金项目31560552
详细信息
作者简介:牛最荣, 主要研究方向为水文与水资源学。E-mail:niuzr@gsau.edu.cn
通讯作者:张芮, 主要研究方向为节水灌溉与水资源利用。E-mail:zhangrui@gsau.edu.cn
中图分类号:S275.9计量
文章访问数:505
HTML全文浏览量:14
PDF下载量:293
被引次数:0
出版历程
收稿日期:2019-11-01
录用日期:2019-12-18
刊出日期:2020-02-01
Effects of water stress at different growth stages on leaf physiological changes and fruit development of grape in greenhouse
NIU Zuirong1,,ZHAO Xia1,
ZHANG Rui1,,,
WANG Wangtian2,
WEN Wen1
1. College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China
2. College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
Funds: the National Natural Science Foundation of China51769001
the National Natural Science Foundation of China51569002
the National Natural Science Foundation of China31560552
More Information
Corresponding author:ZHANG Rui, E-mail:zhangrui@gsau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探究鲜食日光温室葡萄高效节水生产的水分管理方式,选取日光温室6 a生葡萄‘红地球’为试验材料,以充分灌溉为对照[CK,土壤含水率为75%~100%的田间持水率(θf)],分别在萌芽期、新梢生长期、开花坐果期、果实膨大期、着色成熟期设置土壤含水率为55%θf(其他4个生育期为75%~100%θf)的5个水分胁迫处理,调查叶片超氧化物歧化酶(SOD)活性及膜质过氧化物丙二醛(MDA)和脯氨酸(Pro)含量、果实纵横径、果实硬度、单粒重量和产量,研究日光温室葡萄叶片生理和果实产量对水分胁迫的响应机制。结果表明,在果实膨大期、着色成熟期施加水分胁迫均会显著降低葡萄叶片SOD活性和Pro含量,导致MDA含量大量积累,对叶片产生不利影响。在萌芽期、新梢生长期、开花坐果期进行水分胁迫对葡萄叶片SOD活性、Pro含量影响不大,但对叶片MDA含量的影响具有滞后效应。果实膨大期水分胁迫葡萄产量仅为14 830 kg·hm–2,较CK和萌芽期、新梢生长期水分胁迫显著减产20%以上。因此,水分胁迫显著降低果实膨大期SOD活性及渗透调节物质含量,增加膜质过氧化物含量,并导致产量降低,该时期不宜进行亏水处理;生长前期的水分胁迫对葡萄叶片的生理和果实的影响不显著。
关键词:葡萄/
水分胁迫/
生育期/
叶片生理/
果实发育/
日光温室
Abstract:Gansu Hexi Corridor is one of the main grape producing areas in China. In recent years, the greenhouse cultivation improved the price of table grape and farmers income. However, as a high water demand economic crop, grape has been affected by drought in Hexi Corridor. The key to solve the contradiction between grape planting and shortage of water resources is to promote the water-saving and efficient production mode of grape cultivation. In order to explore the efficient water management mode and water-saving production of table grape in greenhouse, the experiment was conducted in a 6-year-old vineyard with water stress (the soil moisture was controlled at 55% to 75% of field water holding capacity) at budburst stage (its duration was 14 d), shoot elongation stage (its duration was 20 d), flowering-fruit bearing stage (its duration was 11 d), fruit enlargement stage (its duration was 72 d), and coloring maturity stage (its duration was 97 d), respectively; while the other stages was at full irrigation (the soil moisture content was up to 75%-100% of field water holding capacity). And the full-irrigation during the whole growth period of grape was set as the contral treatment (CK). The activity of superoxide dismutase (SOD), contents of malondialdehyde (MDA) and proline (Pro), as well as fruit diameter, hardness of fruit, single fruit weight and yield were observed, which were used for study the response mechanism of grape leaf physiology and fruit yield to water stress. The results showed that the SOD activity and Pro content of grape leaves were significantly reduced by water stress at fruit enlargement stage and coloring maturity stage. The MDA content of grape leaves was also significantly increased by water stress during the above two long growing stages, which had a negative effect on grape leaves. The water stresses at budburst stage, shoot elongation and flowering-fruit bearing stages had no significant effects on SOD activity and Pro content of grape leaves, significantly impacted MDA content of grape leaves. The yield under water stress at fruit enlargement stage was 14 830 kg·hm-2, which decreased by more than 20% compared with CK, and treatments of water stress at budburst stage and shoot elongation stage. Therefore, the water stress during fruit expansion stage in greenhouse significantly decreased SOD activity and osmoregulation substances contents, increased MDA content, and led to yield decrease of grape. In Gansu Hexi Corridor, it was not suitable to apply water stress at fruit expansion stage for greenhouse grape. The water stress in the early growth period had no significant effect on the physiology of grape leaves and fruit.
Key words:Grape/
Water stress/
Growth stage/
Leaf physiology/
Fruit development/
Greenhouse
HTML全文
表1不同水分胁迫处理葡萄不同生育期土壤水分下限(占田间持水率的百分比)
Table1.Lower limits of soil water content (at percentage of field capacity) at different growth stages of grapes under different water stress treatments
处理 Treatment | 水分胁迫时期 Water stress period | 生育期 Growth stage | ||||
萌芽期 Bud burst stage | 新梢生长期 Shoot elongation stage | 开花坐果期 Flowering-fruit bearing stage | 果实膨大期 Fruit enlargement stage | 着色成熟期 Coloring maturity stage | ||
T1 | 萌芽期Bud burst stage | 55 | 75 | 75 | 75 | 75 |
T2 | 新梢生长期Shoot elongation stage | 75 | 55 | 75 | 75 | 75 |
T3 | 开花坐果期Flowering-fruit bearing stage | 75 | 75 | 55 | 75 | 75 |
T4 | 果实膨大期Fruit enlargement stage | 75 | 75 | 75 | 55 | 75 |
T5 | 着色成熟期Coloring maturity stage | 75 | 75 | 75 | 75 | 55 |
CK | 无水分胁迫No water stress | 75 | 75 | 75 | 75 | 75 |
下载: 导出CSV
表2不同生育期水分胁迫处理对日光温室葡萄不同生育期叶片SOD活性的影响
Table2.Effects of water stress at different growth stages on SOD activities of grape leaves at different growth stages
生育期Growth stage | T1 | T2 | T3 | T4 | T5 | CK |
萌芽期Bud burst | 101.99±11.22ab | 108.51±5.00ab | 97.97±0.56ab | 94.50±2.18b | 91.59±9.57b | 116.05±4.09a |
新梢生长期Shoot elongation | 26.77±2.40bcd | 20.04±0.50cd | 22.23±0.48bcd | 40.06±6.02ab | 51.16±5.39a | 14.67±2.25d |
开花坐果期Flowering-fruit bearing | 79.21±9.35b | 79.01±6.94b | 3.62±1.24c | 116.16±5.66a | 77.83±0.93b | 108.71±3.13a |
果实膨大期Fruit enlargement | 50.13±4.73bc | 31.12±4.55c | 29.43±5.83c | 43.83±4.43bc | 71.99±6.13b | 105.15±11.51a |
着色成熟期Coloring maturity | 38.55±3.41bc | 41.96±7.02ab | 60.08±5.84ab | 53.30±2.47ab | 10.28±2.94c | 68.35±10.33a |
T1、T2、T3、T4和T5处理的水分胁迫时期分别为萌芽期、新梢生长期、开花坐果期、果实膨大期和着色成熟期。CK处理在葡萄的生育期无水分胁迫。同行不同小写字母表示处理间差异显著(P < 0.05)。The water stress periods of T1, T2, T3, T4 and T5 treatments are bud burst, shoot elongation, flowering-fruit bearing, fruit enlargement and coloring maturity stages, respectively. CK is the control treatment, without water stress. Different lowercases in the same line indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
表3不同生育期水分胁迫处理对日光温室葡萄不同生育期叶片MDA含量的影响
Table3.Effects of water stress at different growth stages on MDA contents of grape leaves at different growth stages
生育期Growth stage | T1 | T2 | T3 | T4 | T5 | CK |
萌芽期Bud burst | 6.23±1.69a | 6.21±1.95a | 8.41±1.64a | 7.09±0.89a | 7.14±0.37a | 8.57±0.25a |
新梢生长期Shoot elongation | 30.69±2.86a | 21.29±3.18ab | 23.96±2.52ab | 27.83±2.39ab | 27.83±3.39ab | 15.28±1.76b |
开花坐果期Flowering-fruit bearing | 14.52±2.42c | 27.41±2.86a | 11.50±0.46c | 22.45±0.58bc | 24.60±1.72ab | 14.83±0.32c |
果实膨大期Fruit enlargement | 17.06±0.20cd | 23.52±2.42abc | 19.56±2.68bcd | 29.77±4.22a | 14.00±1.60d | 26.66±1.52ab |
着色成熟期Coloring maturity | 9.35±1.41b | 9.44±0.77b | 9.28±0.55b | 9.97±0.55b | 12.25±0.30a | 10.97±0.45ab |
T1、T2、T3、T4和T5处理的水分胁迫时期分别为萌芽期、新梢生长期、开花坐果期、果实膨大期和着色成熟期。CK处理在葡萄的生育期无水分胁迫。同行不同小写字母表示处理间差异显著(P < 0.05)。The water stress periods of T1, T2, T3, T4 and T5 treatments are bud burst, shoot elongation, flowering-fruit bearing, fruit enlargement and coloring maturity stages, respectively. CK is the control treatment, without water stress. Different lowercases in the same line indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
表4不同生育期水分胁迫处理对日光温室葡萄不同生育期叶片脯氨酸含量的影响
Table4.Effects of water stress at different growth stages on proline contents of grape leaves at different growth stages
生育期Growth stage | T1 | T2 | T3 | T4 | T5 | CK |
萌芽期Bud burst | 5.94±0.92a | 5.12±0.24a | 7.50±1.93a | 5.03±0.61a | 6.41±0.26a | 6.08±0.12a |
新梢生长期Shoot elongation | 4.63±0.79b | 7.61±0.81ab | 6.65±0.92ab | 8.31±0.35a | 6.75±0.70ab | 5.04±0.52ab |
开花坐果期Flowering-fruit bearing | 8.87±1.26a | 6.44±1.28a | 5.68±1.02a | 5.35±1.12a | 5.78±0.74a | 5.35±1.21a |
果实膨大期Fruit enlargement | 6.94±0.73ab | 5.76±0.44b | 6.09±1.58ab | 5.69±0.20b | 6.48±0.25ab | 8.11±0.34a |
着色成熟期Coloring maturity | 7.78±0.79ab | 8.52±0.60a | 6.78±0.20ab | 7.97±0.29ab | 5.20±0.71b | 5.58±1.09ab |
T1、T2、T3、T4和T5处理的水分胁迫时期分别为萌芽期、新梢生长期、开花坐果期、果实膨大期和着色成熟期。CK处理在葡萄的生育期无水分胁迫。同行不同小写字母表示处理间差异显著(P < 0.05)。The water stress periods of T1, T2, T3, T4 and T5 treatments are bud burst, shoot elongation, flowering-fruit bearing, fruit enlargement and coloring maturity stages, respectively. CK is the control treatment, without water stress. Different lowercases in the same line indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
表5不同生育期水分胁迫处理对日光温室葡萄果实物理特性和产量的影响
Table5.Effects of water stress at different growth stages on physical properties of fruits and yield of grape
处理 Treatment | 果粒橫径 Fruit transverse diameter (mm) | 果粒纵径 Fruit longitudinal diameter (mm) | 果形指数 Fruit shape index | 果实硬度 Fruit hardness (kg·cm–2) | 单粒重量 Weight of single grain (g) | 产量 Yield (kg·hm–2) |
T1 | 19.6±0.5b | 21.6±0.4c | 1.10±0.02a | 7.31±0.43a | 7.01±0.38b | 18 965±1 698a |
T2 | 19.8±0.2ab | 21.8±0.2bc | 1.10±0.02a | 7.32±0.43a | 7.12±0.41b | 19 010±1 193a |
T3 | 20.9±0.5ab | 22.9±0.2ab | 1.10±0.03a | 7.27±0.70a | 7.43±0.33ab | 17 047±719ab |
T4 | 19.6±0.4b | 21.0±0.4c | 1.07±0.00a | 7.31±0.63a | 6.64±0.17b | 14 830±1 021b |
T5 | 21.1±0.8ab | 23.2±0.6a | 1.10±0.02a | 5.31±0.42b | 7.32±0.61ab | 18 022±991ab |
CK | 21.3±0.3a | 23.7±0.3a | 1.11±0.00a | 7.24±0.09a | 8.30±0.15a | 18 534±1 157a |
T1、T2、T3、T4和T5处理分别为萌芽期、新梢生长期、开花坐果期、果实膨大期和着色成熟期水分胁迫; CK为对照处理, 无水分胁迫。同列不同小写字母表示处理间差异显著(P < 0.05)。The water stress periods of T1, T2, T3, T4 and T5 treatments are bud burst, shoot elongation, flowering-fruit bearing, fruit enlargement and coloring maturity stages, respectively. CK is the control treatment, without water stress. Different lowercases in the same column indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
参考文献
[1] | 张付春, 潘明启, 麦麦提阿卜拉·麦麦提图尔荪, 等.浮尘天气对墨玉河流域葡萄叶片光合及水势的影响[J].中国生态农业学报, 2018, 26(7):990-998 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0706&flag=1 ZHANG F C, PAN M Q, MEMETABLA·M, et al. Effect of floating dust weather on leaf photosynthesis and water potential of grapes in Karakash River Basin[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):990-998 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0706&flag=1 |
[2] | 翟衡, 杜远鹏, 孙庆华, 等.论我国葡萄产业的发展[J].果树学报, 2007, 24(6):820-825 http://d.old.wanfangdata.com.cn/Periodical/gskx200706020 ZHAI H, DU Y P, SUN Q H, et al. On the development situation of Chinese grape industry[J]. Journal of Fruit Science, 2007, 24(6):820-825 http://d.old.wanfangdata.com.cn/Periodical/gskx200706020 |
[3] | 赵霞, 张芮, 成自勇, 等.不同生育期调亏灌溉对荒漠绿洲区葡萄生长、产量和品质的影响[J].灌溉排水学报, 2017, 36(10):20-23 http://d.old.wanfangdata.com.cn/Periodical/ggps201710004 ZHAO X, ZHANG R, CHENG Z Y, et al. Effect of regulated deficit irrigation at different growth stages on growth and fruit quality of wine grape in desert oasis[J]. Journal of Irrigation and Drainage, 2017, 36(10):20-23 http://d.old.wanfangdata.com.cn/Periodical/ggps201710004 |
[4] | 刘昌明.中国农业水问题:若干研究重点与讨论[J].中国生态农业学报, 2014, 22(8):875-879 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014801&flag=1 LIU C M. Agricultural water issues in China-Discussions on research highlights[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8):875-879 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014801&flag=1 |
[5] | 董宝娣, 刘会灵, 王亚凯, 等.作物高效用水生理生态调控机制研究[J].中国生态农业学报, 2018, 26(10):1465-1475 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1005&flag=1 DONG B D, LIU H L, WANG Y K, et al. Physio-ecological regulating mechanisms for highly efficient water use of crops[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1465-1475 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1005&flag=1 |
[6] | 殷常青, 费良军, 李渊, 等.日光温室延后栽培葡萄滴灌灌溉制度试验研究[J].节水灌溉, 2016, (10):39-43 doi: 10.3969/j.issn.1007-4929.2016.10.009 YIN C Q, FEI L J, LI Y, et al. Research on drip irrigation schedule of delayed planting grape in sunlight greenhouse in Tianzhu sloping land[J]. Water Saving Irrigation, 2016, (10):39-43 doi: 10.3969/j.issn.1007-4929.2016.10.009 |
[7] | 张芮, 王旺田, 吴玉霞, 等.水分胁迫度及时期对设施延迟栽培葡萄耗水和产量的影响[J].农业工程学报, 2017, 33(1):155-161 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201701021 ZHANG R, WANG W T, WU Y X, et al. Effect of moisture stress level and stage on evapotranspiration and yield of grape under protected and delayed cultivation[J]. Transactions of the CSAE, 2017, 33(1):155-161 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201701021 |
[8] | 张芮, 成自勇, 王旺田, 等.水分胁迫对延后栽培葡萄果实生长的影响[J].华南农业大学学报, 2015, 36(6):47-54 http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201506008 ZHANG R, CHENG Z Y, WANG W T, et al. Effect of water stress on grape fruit growth under delayed cultivation[J]. Journal of South China Agricultural University, 2015, 36(6):47-54 http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201506008 |
[9] | 徐斌, 张芮, 成自勇, 等.不同生育期调亏灌溉对设施延后栽培葡萄生长发育及品质的影响[J].灌溉排水学报, 2015, 34(6):86-89 http://d.old.wanfangdata.com.cn/Periodical/ggps201506018 XU B, ZHANG R, CHENG Z Y, et al. Effects of deficit irrigation on growth and quality of greenhouse grape under delayed cultivation in different stages[J]. Journal of Irrigation and Drainage, 2015, 34(6):86-89 http://d.old.wanfangdata.com.cn/Periodical/ggps201506018 |
[10] | 齐建波, 荣新民, 陈虎, 等.不同水分胁迫水平对葡萄叶水势及生理指标的影响[J].石河子大学学报:自然科学版, 2011, 29(4):437-441 http://d.old.wanfangdata.com.cn/Periodical/shzdxxb201104008 QI J B, RONG X M, CHEN H, et al. Effect of different water stress quantity on leaf water potential and the physiological indexes of grape[J]. Journal of Shihezi University:Natural Science, 2011, 29(4):437-441 http://d.old.wanfangdata.com.cn/Periodical/shzdxxb201104008 |
[11] | 张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社, 2003 ZHANG Z B. Basis of Physiological Genetic Breeding of Crop Water Saving[M]. Beijing:Science Press, 2003 |
[12] | 郑睿, 康绍忠, 胡笑涛, 等.水氮处理对荒漠绿洲区酿酒葡萄光合特性与产量的影响[J].农业工程学报, 2013, 29(4):133-141 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201304017 ZHENG R, KANG S Z, HU X T, et al. Effects of water and nitrogen conditions on the diurnal variation of photosynthesis characteristic and yield of grapevine in arid oasis region[J]. Transactions of the CSAE, 2013, 29(4):133-141 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201304017 |
[13] | 邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000 ZOU Q. Experimental Instruction of Plant Physiology[M]. Beijing:China Agriculture Press, 2000 |
[14] | 高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2006 GAO J F. Experimental Instruction of Plant Physiology[M]. Beijing:Higher Education Press, 2006 |
[15] | 赵世杰, 史国安, 董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社, 2002 ZHAO S J, SHI G A, DONG X C. Experimental Instruction of Plant Physiology[M]. Beijing:China Agricultural Science and Technology Press, 2002 |
[16] | 董亮, 何永志, 王远亮, 等.超氧化物歧化酶(SOD)的应用研究进展[J].中国农业科技导报, 2013, 15(5):53-58 doi: 10.3969/j.issn.1008-0864.2013.05.08 DONG L, HE Y Z, WANG Y L, et al. Research progress on application of superoxide dismutase (SOD)[J]. Journal of Agricultural Science and Technology, 2013, 15(5):53-58 doi: 10.3969/j.issn.1008-0864.2013.05.08 |
[17] | GIRDTHAI T, JOGLOY S, VORASOOT N, et al. Associations between physiological traits for drought tolerance and aflatoxin contamination in peanut genotypes under terminal drought[J]. Plant Breeding, 2010, 129(6):693-699 doi: 10.1111/j.1439-0523.2009.01738.x |
[18] | 杜彩艳, 段宗颜, 潘艳华, 等.干旱胁迫对玉米苗期植株生长和保护酶活性的影响[J].干旱地区农业研究, 2015, 33(3):124-129 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201503022 DU C Y, DUAN Z Y, PAN Y H, et al. Effect of drought stress on growth and activities of antioxidant enzymes of maize seedling[J]. Agricultural Research in the Arid Areas, 2015, 33(3):124-129 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201503022 |
[19] | 何岸镕, 安进强, 张芮, 等.不同生育期水分调亏对设施延后栽培葡萄叶片保护系统及产量品质的影响[J].水土保持学报, 2016, 30(3):196-201 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201603034 HE A R, AN J Q, ZHANG R, et al. Effects of water deficit on leaf protecting system and quality yield of delayed grape cultivation during different growth stage[J]. Journal of Soil and Water Conservation, 2016, 30(3):196-201 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201603034 |
[20] | 薛吉全, 任建宏, 马国胜, 等.玉米不同生育期水分胁迫条件下脯氨酸变化与抗旱性的关系[J].西安联合大学学报, 2000, 3(2):21-25 doi: 10.3969/j.issn.1008-777X.2000.02.006 XUE J Q, REN J H, MA G S, et al. Relationship between proline's change and drought resistance under the condition of water stress in different developmental stages in corn[J]. Journal of Xi'an United University, 2000, 3(2):21-25 doi: 10.3969/j.issn.1008-777X.2000.02.006 |
[21] | 蔡昆争, 吴学祝, 骆世明.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J].植物生态学报, 2008, 32(2):491-500 doi: 10.3773/j.issn.1005-264x.2008.02.029 CAI K Z, WU X Z, LUO S M. Effects of water stress on osmolytes at different growth stages in rice leaves and roots[J]. Journal of Plant Ecology, 2008, 32(2):491-500 doi: 10.3773/j.issn.1005-264x.2008.02.029 |
[22] | MCCARTHY M G. The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.)[J]. Australian Journal of Grape & Wine Research, 2010, 3(3):2-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1755-0238.1997.tb00128.x |
[23] | 张芮, 成自勇, 王旺田, 等.不同生育期水分胁迫对延后栽培葡萄产量与品质的影响[J].农业工程学报, 2014, 30(24):105-113 doi: 10.3969/j.issn.1002-6819.2014.24.013 ZHANG R, CHENG Z Y, WANG W T, et al. Effect of water stress in different growth stages on grape yield and fruit quality under delayed cultivation facility[J]. Transactions of the CSAE, 2014, 30(24):105-113 doi: 10.3969/j.issn.1002-6819.2014.24.013 |
[24] | 刘静霞, 张芮, 成自勇, 等.不同生育期水分亏缺对酿酒葡萄产量及品质的效应研究[J].干旱地区农业研究, 2016, 34(3):78-83 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201603012 LIU J X, ZHANG R, CHENG Z Y, et al. Effect research of water deficit in different growth stage on wine grape yield and quality[J]. Agricultural Research in the Arid Areas, 2016, 34(3):78-83 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201603012 |
[25] | 纪学伟, 成自勇, 赵霞, 等.调亏灌溉对荒漠绿洲区滴灌酿酒葡萄产量及品质的影响[J].干旱区资源与环境, 2015, 29(4):184-188 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201504032 JI X W, CHENG Z Y, ZHAO X, et al. Effect of regulated deficit drip irrigation on yield and quality of wine grape in desert oasis[J]. Journal of Arid Land Resources and Environment, 2015, 29(4):184-188 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201504032 |