删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于扩散理论的华北春玉米生理成熟后籽粒脱水过程分析

本站小编 Free考研考试/2022-01-01

王金涛1,,
董心亮1,
肖宇2,
刘青松2,
张冬梅3,
韩金玲4,
刘毅5,
高广瑞6,
刘占卯6,
孙宏勇1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
2.河北省沧州市农林科学院 沧州 061000
3.山西省农业科学院旱地农业研究中心 太原 030000
4.河北科技师范学院 昌黎 066600
5.沧州市南大港管理区农业科学研究所 沧州 061000
6.国家半干旱农业工程技术研究中心 石家庄 050051
基金项目: 国家重点研发计划项目2016YFD0300305
河北省重点研发计划项目18227008D
河北省重点研发计划项目19227004D

详细信息
作者简介:王金涛, 主要从事作物水盐生理及调控研究。E-mail:jtwang@sjziam.ac.cn
通讯作者:孙宏勇, 主要从事农田水盐运移过程机理与调控研究。E-mail:hysun@sjziam.ac.cn
中图分类号:S157.1

计量

文章访问数:417
HTML全文浏览量:11
PDF下载量:355
被引次数:0
出版历程

收稿日期:2020-01-01
录用日期:2020-02-11
刊出日期:2020-04-01

Analysis of kernel dry down process after physiological maturity of spring maize based on diffusion theory in the North China

WANG Jintao1,,
DONG Xinliang1,
XIAO Yu2,
LIU Qingsong2,
ZHANG Dongmei3,
HAN Jinling4,
LIU Yi5,
GAO Guangrui6,
LIU Zhanmao6,
SUN Hongyong1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061000, China
3. Research Center for Drying Farming, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China
4. Hebei Normal University of Science & Technology, Changli 066600, China
5. Agricultural Science Institute of Nandagang Management Zone, Cangzhou 061000, China
6. The Semi-arid Agriculture Engineering & Technology Research Center of P. R. China, Shijiazhuang 050051, China
Funds: This study was supported by the National Key Research and Development Project of China2016YFD0300305
the Key Research and Development Project of Hebei Province18227008D
the Key Research and Development Project of Hebei Province19227004D

More Information
Corresponding author:SUN Hongyong, E-mail:hysun@sjziam.ac.cn


摘要
HTML全文
(4)(7)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:玉米机收籽粒可以显著提高玉米的生产效率,是玉米生产的发展方向。生理成熟后的籽粒含水率是决定机收质量的关键,受品种、密度和气候等多种因素影响。准确估算生理成熟后玉米籽粒含水率,进而分析其主要影响因素,最终确定玉米收获时间和筛选适宜机收的品种,对玉米主产区华北的春玉米籽粒机收发展具有重要意义。因此,于2017年和2018年在河北省泊头、南大港、玉田和山西榆次进行了两年田间春玉米试验,每年设置7个共性品种,每个品种3个密度,对生理成熟后籽粒含水率、品种性状、气象和管理要素进行了监测,并利用基于扩散理论考虑空气温湿度的脱水模型对籽粒含水率进行了模拟,进而计算脱水曲线下的面积(AUDDC),用以筛选脱水优异的玉米品种。结果表明,基于扩散理论的籽粒脱水模型对玉米生理成熟后籽粒含水率的模拟效果较好;年份、地点和品种对生理成熟时籽粒含水率(M0)和水分扩散速率(k)具有显著影响,密度对脱水参数影响不显著。逐步线性回归分析得到灌浆期参考作物蒸发蒸腾量(ET0)、最高气温和灌水量对M0具有显著的正效应,生理成熟后30 d内ET0和灌浆中后期降雨对k具有显著的正效应,全生育期降雨对k具有显著的负效应。品种性状中对M0影响最大的为苞叶层数(正效应),对k影响最大的为叶片数(负效应)。通过模型计算得到,生理成熟后10 d华北地区春玉米籽粒含水率可以下降到28%,籽粒含水率下降到25%的概率为50%。由模型计算得到各品种生理成熟后10 d内的AUDDC,与AUDDC平均值比较发现‘京农科728’‘张1453’‘华农887’‘广德5’和‘金科玉3306’为脱水表现优异的品种。
关键词:华北春玉米/
籽粒机收/
生理成熟/
籽粒含水率/
籽粒脱水/
扩散理论
Abstract:The moisture content of grains after physiological maturity (MCAM) is the key determinant of the quality of mechanical grain harvesting (MGH), which can significantly improve the production efficiency of maize. Therefore, the aim of this study was to accurately estimate MCAM, analyze the main influencing factors, and determine the harvest time of maize, and select appropriate varieties for MGH. In 2017 and 2018, spring maize field experiments were carried out in Botou, Nandagang, and Yutian of Hebei Province; and Yuci of Shanxi Province. Seven common maize varieties and three densities of each variety were set up each year to monitor MCAM. Variety characteristics, management, meteorological data, and grain moisture content after physiological maturity were determined. A model based on the diffusion theory was used to simulate MCAM considering the atmospheric temperature and humidity. The area under the dry down curve (AUDDC) was used to select the varieties that performed well in the grain dry down. The results showed that the model based on diffusion theory could simulate MCAM well. The year, site, and variety had significant influence on the grain moisture content at physiological maturity (M0) and the moisture diffusion rate (k), which were parameters of the model. However, the planting density had no significant effect on these two parameters. Stepwise linear regression analysis showed that ET0, the maximum temperature, and irrigation amount at grain-filling stage had significant positive effects on M0. The ET0 during the 30 days after physiological maturity and the rainfall in the middle-late grain-filling stage had significant positive effects on k. In contrast, rainfall during the entire growth period had a significant negative effect on k. The number of husk layers had the greatest influence on M0 (positive effect), and the number of leaves had the greatest influence on k (negative effect). Ten days after physiological maturity, the MCAM of spring maize in North China could be reduced to 28% in almost all circumstances and to 25% in half of the circumstances. The AUDDC during the 10 days after physiological maturity of each variety, was calculated using the model. Compared with the average AUDDC, it was found that 'Jingnongke 728' 'Zhang1453' 'Huanong 887' 'Guangde 5' and 'Jinkeyu 3306' displayed excellent dry down performance.
Key words:Spring maize in North China/
Mechanical grain harvesting/
Physiological maturity/
Moisture content of grains/
Grain dry down/
Diffusion theory

HTML全文


图12017年不同试验地点不同密度(60 000株?hm–275 000株?hm–290 000株?hm–2)下不同玉米品种生理成熟后籽粒脱水的模拟值(实线)与实测值(圆点)的对比(a、bc分别代表泊头、南大港和榆次;1~7分别代表玉米品种‘郑单958’ ‘粒收1号’ ‘东单913’ ‘华农887’ ‘金科玉3306’ ‘广德5’和‘张1453’; Me为籽粒平衡含水量, R2为决定系数, RRMSE为相对均方根误差)
Figure1.Comparison between the simulated (solid lines) and measured (dotted lines) grain moisture contents after physiological maturity of different spring maize varieties with different planting densities (60 000 plants-hm'2, 75 000 plants-hm'2 and 90 000 plants-hm'2) in different experiment sites in 2017. The a, b and c represent experiment sites of Botou, Nandagang, Yuci, respectively. The 1 to 7 represent maize varieties of 'Zhengdan 9585 4Lishou No. V 'Dongdan 9135 'Huanong 8875 'Jinkeyu 33065 'Guangde 55 and 'Zhang 1453'. Me is the grain equilibrium moisture content. R2 is the coefficient of deter- mination; RRMSE is the relative root mean square error.


下载: 全尺寸图片幻灯片


图22018年不同试验地点不同密度(60 000株?hm–275 000株?hm–290 000株?hm–2)下不同玉米品种生理成熟后籽粒脱水的模拟值(实线)与实测值(圆点)的对比(a、bc分别代表泊头、南大港和榆次;1~7分别代表玉米品种‘郑单958’ ‘粒收1号’ ‘东单913’ ‘华农887’ ‘金科玉3306’ ‘广德5’和‘京农科728’; Me为籽粒平衡含水量, R2为决定系数, RRMSE为相对均方根误差)
Figure2.Comparison between the simulated (solid lines) and measured (dotted lines) grain moisture contents after physiological maturity of different spring maize varieties with different planting densities (60 000 plants-hm'2, 75 000 plants-hm'2 and 90 000 plants-hm'2) in different experiment sites in 2018. The a, b and c represent experiment sites of Botou, Nandagang, Yuci, respectively. The 1 to 7 represent maize varieties of 'Zhengdan 9585 4Lishou No. V 'Dongdan 9135 'Huanong 8875 'Jinkeyu 33065 'Guangde 55 and 'Jingnongke 728'. Me is the grain equilibrium moisture content. R2 is the coefficient of deter- mination; RRMSE is the relative root mean square error.


下载: 全尺寸图片幻灯片


图3不同试验地点玉米生理成熟后籽粒含水率到达28%(a)25%(b)时的天数
Figure3.Days after physiological maturity when spring maize grain moisture drying to 28% (a) and 25% (b) at each experiment site


下载: 全尺寸图片幻灯片


图4春玉米生理成熟后籽粒平均脱水曲线(虚线为所有品种和地点两年平均脱水曲线, 实线为各品种所有地点两年平均脱水曲线)
Figure4.Average spring maize grain dry down curve after physiological maturity. (The dashed line represents the average maize grain dry down curve of all years, sites and varieties. The solid line represents the average maize grain dry down curve of all years and sites for each variety.)


下载: 全尺寸图片幻灯片

表14个春玉米试验地点的高程和气象条件
Table1.Elevation and meteorological conditions of the four spring maize experimental sites
地点Site 高程
Elevation
(m)
多年平均降雨量
Average annual
precipitation
(mm)
多年平均蒸发量
Average annual
evaporation
(mm)
多年平均气温
Average
temperature
(℃)
多年平均相对湿度
Average
relative humidity
(%)
多年平均日照时数
Average
sunshine hours
(h)
泊头?Botou 13.2 583.0 1 862.7 14.5 57.9 6.7
南大港?Nandagang 6.6 575.7 1 977.0 14.0 61.3 7.8
榆次?Yuci 831.2 507.2 1 833.0 11.6 55.9 7.5
玉田?Yutian 14.4 569.0 1 576.8 11.5 64.3 6.8


下载: 导出CSV
表22017年和20184个地点春玉米的耕作方式、播种日期、施肥量和灌溉措施
Table2.Tillage method, sowing date, fertilization and irrigation of the four spring maize experiment sites in 2017 and 2018
年份Year 地点Site 耕作方式Tillage method 播种日期(月-日)
Sowing date
(month-day)
施肥量
Fertilization rate (kg·hm-2)
灌溉量
Irrigation
N P2O5 K2O 时间(月-日)
Date (month-day)
灌水量
Irrigation amount (mm)
2017 泊头
Botou
翻耕
Ploughing
05-13 225 113 113.0 05-13 75
06-18 75
南大港
Nandagang
深翻旋耕
Deep ploughing and rotary
tillage
05-27 180 210 0 05-27 80
榆次
Yuci
深翻旋耕
Deep ploughing and rotary tillage
05-08 240 124 74.5 07-12 75
08-10 60
玉田Yutian 旋耕Rotary tillage 05-21 210 120 80.0 06-03 45
2018 泊头Botou 翻耕Ploughing 05-10 225 113 113.0 05-02 75
南大港
Nandagang
深翻旋耕
Deep ploughing and rotary tillage
05-23 180 210 0 05-23 80
榆次
Yuci
深翻旋耕
Deep ploughing and rotary tillage
04-24 240 125 73.5 06-24 52.5
07-02 52.5
08-03 52.5


下载: 导出CSV
表32017年和2018年4个试验地点各春玉米品种不同密度下的吐丝日期和生理成熟日期(月-日)
Table3.Silking date (mouth-day) and physiological maturity date (mouth-day) of different spring maize varieties in different densities at four experiment sites in 2017 and 2018
年份
Year
地点
Site
密度
Plant density (plants·hm-2)
郑单958
Zhengdan 958
粒收1号
Lishou No. 1
东单913
Dongdan 913
华农887
Huanong 887
金科玉3306
Jinkeyu 3306
广德5
Guangde 5
张1453 /京农科728
Zhang 1453 / Jingnongke 728
吐丝
Silking
生理成熟
Physiological maturity
吐丝
Silking
生理成熟
Physiological maturity
吐丝
Silking
生理成熟
Physiological maturity
吐丝
Silking
生理成熟
Physiological maturity
吐丝
Silking
生理成熟
Physiological maturity
吐丝
Silking
生理成熟
Physiological maturity
吐丝
Silking
生理成熟
Physiological maturity
2017 泊头 60 000 07-18 10-07 07-22 09-30 07-15 09-02 07-19 09-30 07-18 09-16 07-18 09-23 07-22 09-23
Botou 75 000 07-19 10-07 07-22 09-30 07-16 09-02 07-19 09-30 07-18 09-16 07-18 09-23 07-22 09-23
90 000 07-20 10-07 07-22 09-30 07-16 09-02 07-19 09-30 07-18 09-16 07-18 09-23 07-22 09-23
南大港 60 000 08-02 09-14 08-01 09-12 07-30 09-09 07-29 09-10 07-28 09-08 08-03 09-11 07-29 09-07
Nandagang 75 000 08-02 09-14 08-01 09-12 07-30 09-09 07-29 09-10 07-28 09-08 08-03 09-11 07-29 09-07
90 000 08-02 09-14 08-01 09-12 07-30 09-09 07-29 09-10 07-28 09-08 08-03 09-11 07-29 09-07
榆次 60 000 07-19 09-28 07-19 09-27 07-17 09-25 07-17 09-21 07-19 09-26 07-18 09-21 07-17 09-23
Yuci 75 000 07-19 09-28 07-19 09-27 07-17 09-25 07-17 09-20 07-18 09-26 07-19 09-21 07-17 09-23
90 000 07-22 09-28 07-20 09-27 07-18 09-26 07-18 09-20 07-19 09-26 07-20 09-21 07-18 09-23
玉田 60 000 07-22 09-16 07-21 09-19 07-20 09-14 07-20 09-18 07-20 09-12 07-29 09-15 07-02 09-14
Yutian 75 000 07-23 09-16 07-21 09-19 07-20 09-17 07-20 09-18 07-20 09-12 07-29 09-16 07-02 09-20
90 000 07-24 09-16 07-21 09-20 07-20 09-16 07-20 09-18 07-20 09-12 07-29 09-16 07-02 09-20
2018 泊头 60 000 07-13 09-17 07-01 09-04 07-09 08-29 07-01 09-04 07-01 08-29 07-11 08-29 07-08 08-29
Botou 75 000 07-13 09-17 07-01 09-04 07-09 08-29 07-01 09-04 07-01 08-29 07-11 08-29 07-09 08-29
90 000 07-15 09-17 07-01 09-04 07-09 08-29 07-01 09-04 07-01 08-29 07-12 08-29 07-08 08-29
南大港 60 000 07-22 09-21 07-25 09-19 07-21 09-17 07-21 09-16 07-22 09-19 07-21 09-19 07-22 09-13
Nandagang 75 000 07-22 09-21 07-25 09-19 07-21 09-17 07-21 09-16 07-22 09-19 07-21 09-19 07-22 09-13
90 000 07-22 09-21 07-25 09-19 07-21 09-17 07-21 09-16 07-22 09-19 07-21 09-19 07-22 09-13
榆次 60 000 07-04 09-17 07-06 09-20 07-04 09-11 07-03 09-12 07-06 09-13 07-05 09-06 07-05 09-06
Yuci 75 000 07-05 09-17 07-06 09-20 07-04 09-11 07-04 09-12 07-06 09-13 07-05 09-06 07-05 09-06
90 000 07-05 09-17 07-06 09-20 07-03 09-11 07-03 09-12 07-06 09-13 07-05 09-06 07-05 09-06


下载: 导出CSV
表4影响春玉米生理成熟后脱水参数的气象-管理因素
Table4.Meteorological and management factors influencing dry down parameters of spring maize grain after physiological maturity
因素
Factor
全生育期
Whole growth
period
灌浆期
Grain-filling stage
灌浆中后期
Middle-late grain-filling stage
成熟后30 d
30 days after
maturity
累积降雨量Cumulative precipitation P1 P2 P3 P4
累积ET0 Cumulative ET0 ET01 ET02 ET03 ET04
积温Cumulative temperature GDD1 GDD2 GDD3 GDD4
平均气温Average temperature T1 T2 T3 T4
平均最高气温Average maximum temperature MaxT1 MaxT2 MaxT3 MaxT4
平均最低气温Average minimum temperature MinT1 MinT2 MinT3 MinT4
平均风速Average wind speed u1 u2 u3 u4
平均日照时数Average sunshine hours Sunhour1 Sunhour2 Sunhour3 Sunhour4
平均相对湿度Average relative humidity RH1 RH2 RH3 RH4
灌水量Irrigation amount IRRI1 IRRI2 IRRI3 IRRI4
水分输入Water input WATER1 WATER2 WATER3 WATER4
水分输入/ET0 Water input / ET0 WATER1ET01 WATER1ET02 WATER1ET03 WATER1ET04


下载: 导出CSV
表5年份、地点、品种和密度对春玉米生理成熟时籽粒含水率(M0)和生理成熟后脱水速率(k)影响的方差分析
Table5.Analysis of variance on the effect of year, site, variety and density on spring maize grain moisture content at physiological maturity (M0) and grain dry down rate after physiological maturity (k)
差异来源
Sources of variance
P (Sig.)
M0 k
年份Year (Y) 0.000** 0.034*
地点Site (S) 0.003** 0.006**
品种Variety(G) 0.000** 0.000**
密度Density(D) 0.891ns 0.392ns
Y × S 0.243ns 0.000**
Y × G 0.008** 0.540ns
Y × D 0.548ns 0.715ns
S × G 0.014* 0.013*
S × D 0.897ns 0.794ns
G × D 0.984ns 1.000ns
Y × S × G 0.000** 0.018*
Y × S × D 0.855ns 0.787ns
Y × G × D 0.997ns 0.999ns
S× G × D 1.000ns 1.000ns
ns表示在P=0.05水平不显著; *表示在P < 0.05水平显著; **表示在P < 0.01水平显著。ns: nonsignificant at P < 0.05 probability level; *: significant at P < 0.05 probability level; **: significant at P < 0.01 probability level.


下载: 导出CSV
表6春玉米生理成熟时籽粒含水率(M0)和生理成熟后脱水速率(k)与气象-管理因素和品种性状逐步回归分析结果
Table6.Results of stepwise regression analysis of spring maize grain moisture content at physiological maturity (M0) and grain dry down rate after physiological maturity (k) with the meteorological-management factors and the variety characteristics
因变量
Dependent
variable
自变量类型
Independent variable type
模型
Model
非标准化系数
Non standardized
coefficient
标准化系数
Standardized
coefficient
t Sig. ANOVA
Sig.
R2
M0 气象-管理参数Meteorological-
management factors
常量Constant 71.782 9.376 0.000 0.000 0.310
ET02 -0.023 -0.325 -3.790 0.000
MaxT2 -1.143 -0.415 -4.353 0.000
IRRI2 -0.042 -0.339 -3.096 0.002
品种性状
Variety
characteristics
常量Constant 34.941 6.458 0.000 0.045 0.168
叶片数Leaf number -0.012 -0.012 -0.086 0.932
株高Plant height -0.028 -0.290 -1.261 0.211
穗位高Ear height 0.002 0.015 0.063 0.950
茎粗Stem diameter 0.042 0.026 0.200 0.842
苞叶层数Layers of husks 0.228 0.136 1.028 0.307
生理成熟时果穗下垂比例
Hanging-ear proportion at physiological maturity
-0.029 -0.101 -0.471 0.639
生理成熟时植株倒伏比例
Lodging-plant proportion at physiological maturity
-0.042 -0.191 -0.854 0.396
k 气象-管理参数
Meteorological- management factors
常量Constant 0.031 3.073 0.003 0.000 0.444
ET04 0.000 0.363 4.393 0.000
P1 0.000 -0.545 -8.287 0.000
u3 0.017 0.258 3.256 0.001
品种性状
Variety characteristics
常量Constant 0.102 3.147 0.003 0.019 0.296
叶片数Leaf number -0.002 -0.638 -3.905 0.000
株高Plant height 0.000 -0.077 -0.298 0.767
穗位高Ear height 0.000 -0.264 -0.934 0.355
茎粗Stem diameter -0.001 -0.139 -0.797 0.429
苞叶层数Layers of husks 0.000 -0.079 -0.443 0.659
生理成熟时果穗下垂比例
Hanging-ear proportion at
physiological maturity
0.000 -0.055 -0.215 0.830
生理成熟时植株倒伏比例
Lodging-plant proportion at
physiological maturity
0.000 0.163 0.582 0.563
生理成熟后果穗下垂比例
Hanging-ear proportion after
physiological maturity
0.000 -0.154 -0.105 0.917
生理成熟后植株倒伏比例
Lodging-plant proportion after
physiological maturity
0.000 0.283 0.192 0.849
ET02为灌浆期ET0, MaxT2为灌浆期平均最高气温, IRRI2为灌浆期灌水量, ET04为生理成熟后30 d的ET0, P1为全生育期降雨量, u3为灌浆中后期的平均风速。ET02: cumulative ET0 during grain-filling stage; MaxT2: average maximum temperature during grain-filling stage; IRRI2: irrigation amount during grain-filling stage; ET04: cumulative ET0 at 30 days after physiological maturity; P1: cumulative precipitation during the whole growth period; u3: average wind speed during the middle-late grain-filling stage.


下载: 导出CSV
表7各春玉米品种生理成熟时籽粒含水率(M0)和生理成熟后籽粒脱水速率(k)的平均值
Table7.Average grain moisture at physiological maturity (M0) and grain dry down rate after physiological maturity (k) of each cultivar of spring maize
品种?Variety M0 (%) k
郑单958 ?Zhengdan 958 31.89 0.023
粒收1号?Lishou No.1 32.32 0.043
东单913 ?Dongdan 913 30.93 0.036
华农887 ?Huanong 887 29.26 0.036
金科玉3306?Jinkeyu 3306 31.27 0.044
广德5?Guangde 5 30.68 0.043
张1453?Zhang 1453 29.83 0.057
京农科728?Jingnongke 728 26.67 0.032
平均?Average 30.59 0.039


下载: 导出CSV

参考文献(26)
[1]王克如, 李少昆.玉米籽粒脱水速率影响因素分析[J].中国农业科学, 2017, 50(11):2027-2035 doi: 10.3864/j.issn.0578-1752.2017.11.008
WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids[J]. Scientia Agricultura Sinica, 2017, 50(11):2027-2035 doi: 10.3864/j.issn.0578-1752.2017.11.008
[2]李璐璐, 明博, 谢瑞芝, 等.黄淮海夏玉米品种脱水类型与机械粒收时间的确立[J].作物学报, 2018, 44(12):1764-1773 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201812004
LI L L, MING B, XIE R Z, et al. Grain dehydration types and establishment of mechanical grain harvesting time for summer maize in the Yellow-Huai-Hai Rivers plain[J]. Acta Agronomica Sinica, 2018, 44(12):1764-1773 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201812004
[3]MARTINEZ-FERIA R A, LICHT M A, ORD EZ R A, et al. Evaluating maize and soybean grain dry-down in the field with predictive algorithms and genotype-by-environment analysis[J]. Scientific Reports, 2019, 9:7167 doi: 10.1038/s41598-019-43653-1
[4]刘青松, 肖宇, 徐玉鹏, 等.玉米生理成熟后田间生长性状随站秆时间变化的研究[J].内蒙古农业大学学报:自然科学版, 2019, 40(2):19-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgnydxxb201902004
LIU Q S, XIAO Y, XU Y P, et al. Study on traits of spring maize with standing time in field after physiological ripening[J]. Journal of Inner Mongolia Agricultural University:Natural Science Edition, 2019, 40(2):19-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgnydxxb201902004
[5]BORR S L, ZINSELMEIER C, SENIOR M L, et al. Characterization of grain-filling patterns in diverse maize germplasm[J]. Crop Science, 2009, 49(3):999-1009 doi: 10.2135/cropsci2008.08.0475
[6]BORR S L, WESTGATE M E. Predicting maize kernel sink capacity early in development[J]. Field Crops Research, 2006, 95(2/3):223-233 doi: 10.1016-j.fcr.2005.03.001/
[7]MAIORANO A, FANCHINI D, DONATELLI M. MIMYCS.Moisture, a process-based model of moisture content in developing maize kernels[J]. European Journal of Agronomy, 2014, 59:86-95 doi: 10.1016/j.eja.2014.05.011
[8]李璐璐, 明博, 高尚, 等.夏玉米籽粒脱水特性及与灌浆特性的关系[J].中国农业科学, 2018, 51(10):1878-1889 doi: 10.3864/j.issn.0578-1752.2018.10.007
LI L L, MING B, GAO S, et al. Study on grain dehydration characters of summer maize and its relationship with grain filling[J]. Scientia Agricultura Sinica, 2018, 51(10):1878-1889 doi: 10.3864/j.issn.0578-1752.2018.10.007
[9]MILES S R. Rates of Maturing and Field Drying of Some Dent Corn Hybrids and Varieties[M]. Agronomy Mimeo. America:University of Maryland, 1940
[10]CROSS H Z. Leaf expansion rate effects on yield and yield components in early-maturing maize[J]. Crop Science, 1991, 31(3):579-583 doi: 10.2135/cropsci1991.0011183X003100030006x
[11]FREPPON J T, MARTIN S K S, PRATT R C, et al. Section for low ear moisture in corn, using a hand-held meter[J]. Crop Science, 1992, 32(4):1062-1064 doi: 10.2135/cropsci1992.0011183X003200040046x
[12]YANG J, CARENA M J, UPHAUS J. Area under the dry down curve (AUDDC):A method to evaluate rate of dry down in maize[J]. Crop Science, 2010, 50(6):2347-2354 doi: 10.2135/cropsci2010.02.0098
[13]ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements[R]. Irrigation and Drainage Paper 56. Rome, Italy: United Nations Food and Agriculture Organization, 1998: 300
[14]HENDERSON S M, PERRY R L. Agricultural Process Engineering[M]. Westport:AVI Publishing Company, 1976
[15]WANG J T, KANG S Z, ZHANG X T, et al. Simulating kernel number under different water regimes using the Water-Flowering Model in hybrid maize seed production[J]. Agricultural Water Management, 2018, 209:188-196 doi: 10.1016/j.agwat.2018.07.014
[16]ALLEN R A, PEREIRA L S, RAES D, et al. Crop Evapotranspiration: guidelines for computing crop water requirements[R]. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations, 1998
[17]WIDDICOMBE W D, THELEN K D. Row width and plant density effects on corn grain production in the northern corn belt[J]. Agronomy Journal, 2002, 94(5):1020-1023 doi: 10.2134/agronj2002.1020
[18]李淑芳, 张春宵, 路明, 等.玉米籽粒自然脱水速率研究进展[J].分子植物育种, 2014, 12(4):825-829 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201404027
LI S F, ZHANG C X, LU M, et al. Research development of kernel dehydration rate in maize[J]. Molecular Plant Breeding, 2014, 12(4):825-829 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201404027
[19]闫淑琴.玉米籽粒灌浆速度研究进展[J].杂粮作物, 2006, 26(4):285-287 doi: 10.3969/j.issn.2095-0896.2006.04.014
YAN S Q. Research advance on maize grain fiuing rote[J]. Rain Fed Crops, 2006, 26(4):285-287 doi: 10.3969/j.issn.2095-0896.2006.04.014
[20]SALA R G, ANDRADE F H, WESTGATE M E. Maize kernel moisture at physiological maturity as affected by the source-sink relationship during grain filling[J]. Crop Science, 2007, 47(2):711-716 doi: 10.2135/cropsci2006.06.0381
[21]李璐璐, 谢瑞芝, 王克如, 等.去苞叶对玉米子粒脱水过程的影响[J].作物杂志, 2018, (2):114-117 http://d.old.wanfangdata.com.cn/Periodical/zwzz201802020
LI L L, XIE R Z, WANG K R, et al. Effects of peeling husk on grain dehydration of maize[J]. Crops, 2018, (2):114-117 http://d.old.wanfangdata.com.cn/Periodical/zwzz201802020
[22]吕香玲, 兰进好, 张宝石.玉米果穗脱水速率的研究[J].西北农林科技大学学报(自然科学版), 2006, 34(2):48-52 doi: 10.3321/j.issn:1671-9387.2006.02.011
Lü X L, LAN J H, ZHANG B S. Study on ear moisture loss rate in maize[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry:Natural Science Edition, 2006, 34(2):48-52 doi: 10.3321/j.issn:1671-9387.2006.02.011
[23]赵东宾, 杨哲.影响玉米机械收粒质量因素的分析[J].新疆农垦科技, 2016, 39(5):40-42 doi: 10.3969/j.issn.1001-361X.2016.05.017
ZHAO D B, YANG Z. Analysis of the factors affecting the mechanical grain harvesting quality of maize[J]. Xinjiang Agricultural Reclamation Technology, 2016, 39(5):40-42 doi: 10.3969/j.issn.1001-361X.2016.05.017
[24]谢瑞芝, 雷晓鹏, 王克如, 等.黄淮海夏玉米子粒机械收获研究初报[J].作物杂志, 2014, (2):76-79 http://d.old.wanfangdata.com.cn/Periodical/zwzz201402019
XIE R Z, LEI X P, WANG K R, et al. Research on corn mechanically harvesting grain quality in Huanghuaihai plain[J]. Crops, 2014, (2):76-79 http://d.old.wanfangdata.com.cn/Periodical/zwzz201402019
[25]雷晓鹏.黄淮海地区玉米机械收获籽粒可行性研究[D].保定: 河北农业大学, 2015
LEI X P. Studies on the feasibility of maize mechanically harvesting grain in Huanghuaihai regions[D]. Baoding: Hebei Agricultural University, 2015
[26]李璐璐, 王克如, 谢瑞芝, 等.玉米生理成熟后田间脱水期间的籽粒重量与含水率变化[J].中国农业科学, 2017, 50(11):2052-2060 doi: 10.3864/j.issn.0578-1752.2017.11.011
LI L L, WANG K R, XIE R Z, et al. Corn kernel weight and moisture content after physiological maturity in field[J]. Scientia Agricultura Sinica, 2017, 50(11):2052-2060 doi: 10.3864/j.issn.0578-1752.2017.11.011

相关话题/生理 作物 比例 管理 气象