删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同统计模型在冬小麦产量预报中的预报能力评估——以江苏麦区为例

本站小编 Free考研考试/2022-01-01

徐敏1,,,
徐经纬2,
高苹1,
宋迎波3
1.江苏省气候中心 南京 210008
2.南京信息工程大学气象灾害教育部重点实验室/南京信息工程大学气象灾害预报预警与评估协同创新中心 南京 210044
3.国家气象中心 北京 100081
基金项目: 2019年国内外作物产量气象预报专项、江苏省气象局面上科研基金KM201906
国家自然科学基金项目41871053

详细信息
作者简介:徐敏, 主要从事作物产量预报方法研究。E-mail:amin0506@163.com
中图分类号:F062.2

计量

文章访问数:398
HTML全文浏览量:6
PDF下载量:589
被引次数:0
出版历程

收稿日期:2019-11-19
录用日期:2020-01-03
刊出日期:2020-03-01

Evaluation of winter wheat yield prediction ability of different statistical models—A case study of Jiangsu wheat-growing region

XU Min1,,,
XU Jingwei2,
GAO Ping1,
SONG Yingbo3
1. Climate Center of Jiangsu Province, Nanjing 210008, China
2. Key Laboratory of Meteorological Disaster, Ministry of Education and Nanjing University of Information Sciences & Technology/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Sciences & Technology, Nanjing 210044, China
3. National Meteorological Center, Beijing 100081, China
Funds: the Special Found for Meteorological Forecast of Crop Yield in Domestic and Foreign in 2019, the Surface Scientific Research Fund of Jiangsu Meteorology BureauKM201906
the National Natural Science Foundation of China41871053

More Information
Corresponding author:XU Min, E-mail: amin0506@163.com


摘要
HTML全文
(3)(1)
参考文献(23)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:在多类冬小麦单产统计预报模型中筛选出预报能力强的模型,并对优选出的模型进行加权集成,以此提高产量预报准确率,对保障粮食安全具有重要意义。利用1993-2018年江苏省69个基本气象观测站逐日气象资料和冬小麦产量数据及生育期资料,在5种气象产量分离方法(线性分离、差值百分率、5年滑动平均、3年滑动平均、二次曲线)的基础上,采用准确率、标准差、相关系数、泰勒图等检验法,评估分析了丰歉相似年法、关键气象因子法、气候适宜度法与集成预报法在江苏省冬小麦单产预报中的模拟效果。结果表明:1)对于同一种预报方法,不同的产量分离法对预报精度影响较大,二次曲线分离法要好于其他4种方法;丰歉相似年预报方法中加权法的预报精度高于大概率法。1993-2013年丰歉相似年法、关键气象因子法、气候适宜度法平均准确率分别为89.67%、94.86%和94.96%。2)集成预报法近5年预报准确率在96.33%以上,高于丰歉加权模型、关键气象因子二次曲线分离模型、气候适宜度二次曲线分离模型等单个最优模型,在一定程度上可以弥补单一预报方法预报结果稳定性差的不足。3)起报时间越接近成熟期,预报因子信息越全面,则预报模型准确率越高。研究结果可为江苏省冬小麦采用合理的单产预报模型提供科学依据,同时模型筛选思路也可供外省借鉴。
关键词:冬小麦/
产量预报/
丰歉相似年法/
关键气象因子法/
气候适宜度法/
产量分离方法/
最优模型集成
Abstract:We screened for the highest performance model among several winter wheat yield predicting models. The selected model was weighted and integrated in order to improve the accuracy of prediction, as it plays a key role in ensuring food security. Daily meteorological observations, winter wheat yield data, and growth period observations were obtained from 69 basic meteorological stations in Jiangsu Province from 1993 to 2018. Then, five methods of meteorological yield and trend yield separation (linear separation, percentage difference, 5-or 3-year sliding average, and quadratic curve) were compared. On this base, by using the fitting test and hind-casting test, we evaluated and analyzed the simulation effects of yield prediction methods based on similar years with bumper or poor harvest, key meteorological factors and climate suitability, and integrated the methods for Jiangsu winter wheat yield prediction. The results revealed the following:1) For the same yield prediction method, the yield separation methods had a greater effect on prediction accuracy. The quadratic curve method was the best among the linear separation, percentage difference, 5-or 3-year sliding average and quadratic curve methods. The prediction accuracy of the weighting method was higher than the large probability method in the similar years with bumper or poor harvest prediction method. From 1993 to 2013, the average accuracy of the methods of the similar years with bumper or poor harvest prediction, key meteorological factor, and climate suitability were 89.67%, 94.86%, and 94.96%, respectively. 2) The accuracy of the integrated prediction method was more than 96.33% in the past 5 years, and it was higher than that of the similar years with bumper or poor harvest-weighting model, key factor-quadratic curve model and climate suitability-quadratic curve model. This could probably overcome the less stability of prediction accuracy of a single prediction method. 3) The closer the predicted time to the maturity period and the more comprehensive the prediction factor information, the higher the accuracy of the prediction model. These results provide a scientific basis for selecting an optimized prediction model for winter wheat yield in Jiangsu, and the methodology of model screening can also be used in other provinces.
Key words:Winter wheat/
Yield prediction/
The method of similar years with bumper or poor harvest/
The method of key meteorological factors/
The method of climate suitability/
Separation method of meteorological yield and trend yield/
Integration of optimal model result

HTML全文


图11993—2013年江苏省12种冬小麦单产预报模型历史模拟值与实际值
(a:起报时间4月10日; b:起报时间5月10日)
GY为单产实测值。GB-W和GB-A分别表示丰歉相似年法中的加权法和大概率法。KMF和CS分别表示基于关键气象因子和气候适宜度的单产预测方法。L、D、M5、M3和Q分别表示线性分离法、差值百分率分离法、5年滑动平均分离法、3年滑动平均分离法和二次曲线分离法等产量分离方法。
Figure1.Winter wheat yield simulated by 12 yield prediction models and actual yield in Jiangsu Province from 1993 to 2013
(a: starting time is April 10; b: starting time is May 10)
GY is the actual grain yield per unit area. GB-W and GB-A are bumper or poor harvest methods of weighting and approximate ratio. KMF and CS are yield prediction methods based on key meteorological factors and climate suitability. L, D, M5, M3 and Q are yield separation methods of linear separation, percentage difference, 5-year sliding average, 3-year sliding average separation, and quadratic curve.


下载: 全尺寸图片幻灯片


图21993—2013年江苏省冬小麦12种单产预报模型的历史拟合平均准确率(a)和单产增减正确率(b)
GB-W和GB-A分别表示丰歉相似年法中的加权法和大概率法。KMF和CS分别表示基于关键气象因子和气候适宜度的单产预测方法。L、D、M5、M3和Q分别表示线性分离法、差值百分率分离法、5年滑动平均分离法、3年滑动平均分离法和二次曲线分离法等产量分离方法。
Figure2.Average accuracy of yield fitting (a) and average accuracy of yield increase and decrease (b) calculated by 12 yield prediction models in Jiangsu Province from 1993 to 2013
GB-W and GB-A are bumper or poor harvest methods of weighting and approximate ratio. KMF and CS are yield prediction methods based on key meteorological factors and climate suitability. L, D, M5, M3 and Q are yield separation methods of linear separation, percentage difference, 5-year sliding average, 3-year sliding average separation, and quadratic curve.


下载: 全尺寸图片幻灯片


图31993—2013年江苏省冬小麦12种单产预报模型历史模拟值与实际值的泰勒图
GY为单产实测值。GB-W和GB-A分别表示丰歉相似年法中的加权法和大概率法。KMF和CS分别表示基于关键气象因子和气候适宜度的单产预测方法。L、D、M5、M3和Q分别表示线性分离法、差值百分率分离法、5年滑动平均分离法、3年滑动平均分离法和二次曲线分离法等产量分离方法。
Figure3.Taylor diagrams for wheat yield between the observations and simulation by 12 yield prediction models in Jiangsu Province from 1993 to 2013
GY is the actual grain yield per unit area. GB-W and GB-A are bumper or poor harvest methods of weighting and approximate ratio. KMF and CS are yield prediction methods based on key meteorological factors and climate suitability. L, D, M5, M3 and Q are yield separation methods of linear separation, percentage difference, 5-year sliding average, 3-year sliding average separation, and quadratic curve.


下载: 全尺寸图片幻灯片

表12014—2018年不同起报时间江苏省冬小麦最优模型和多模型集成单产预报值与实际值
Table1.Winter wheat yield simulated by optimal yield forecasting models and multiple model integration for different forecast starting time and actual yield in Jiangsu Province from 2014 to 2018
起报时间(月-日)
Staring time (month-day)
年份
Year
实际单产
Actual yield (kg·hm-2)
GB-WKMF-QCS-Q最优模型集成
Integration of optimal model
预报单产
Predicted yield (kg·hm-2)
准确率
Accuracy (%)
预报单产
Predicted yield (kg·hm-2)
准确率
Accuracy (%)
预报单产
Predicted yield (kg·hm-2)
准确率
Accuracy (%)
预报单产
Predicted yield (kg·hm-2)
准确率
Accuracy (%)
04-1020145 1625 43694.675 02697.385 10898.975 14999.75
20155 1815 30197.685 15799.545 03797.225 17699.91
20165 1125 35995.174 84394.735 30896.165 23097.70
20175 3695 23797.555 06794.385 15195.955 17796.42
20185 3635 34799.735 03793.945 33899.555 28298.50
平均
Average
96.9695.9997.5798.46
05-1020145 1625 31697.014 97496.365 15099.785 16599.94
20155 1814 97195.955 09298.305 15199.435 09798.39
20165 1125 35995.174 84194.705 22097.895 18698.56
20175 3695 23797.545 00293.175 17896.445 17296.33
20185 3635 52796.915 04894.145 26198.125 29898.80
平均
Average
96.5295.3398.3398.41
GB-W为丰歉相似年法中的加权法。KMF和CS分别表示基于关键气象因子和气候适宜度的单产预测方法。Q表示二次曲线产量分离法。GB-W is bumper or poor harvest methods of weighting. KMF and CS are yield prediction methods based on key meteorological factors and climate suitability. Q is yield separation method of quadratic curve.


下载: 导出CSV

参考文献(23)
[1]单琨, 刘布春, 李茂松, 等.基于花粉量的作物产量预测模型研究进展[J].中国农业气象, 2010, 31(2):282-287 doi: 10.3969/j.issn.1000-6362.2010.02.022
SHAN K, LIU B C, LI M S, et al. Research progress of pollen variable models for forecasting crop yield[J]. Chinese Journal of Agrometeorology, 2010, 31(2):282-287 doi: 10.3969/j.issn.1000-6362.2010.02.022
[2]池俊成, 王兰君, 刑树本, 等.作物产量预测技术在外贸决策中的应用[J].中国农业气象, 1997, 18(3):45-46 http://www.cnki.com.cn/Article/CJFDTotal-ZGNY703.013.htm
CHI J C, WANG L J, XING S B, et al. Application of crops yield prediction method in foreign trade policy[J]. Chinese Journal of Agrometeorology, 1997, 18(3):45-46 http://www.cnki.com.cn/Article/CJFDTotal-ZGNY703.013.htm
[3]成林, 刘荣花.农学模式在冬小麦产量动态预报中的应用[J].气象与环境科学, 2017, 40(2):28-32 http://d.old.wanfangdata.com.cn/Periodical/hnqx201702004
CHENG L, LIU R H. Application of agronomic model in yield dynamic prediction of winter wheat[J]. Meteorological and Environmental Sciences, 2017, 40(2):28-32 http://d.old.wanfangdata.com.cn/Periodical/hnqx201702004
[4]邱美娟, 宋迎波, 王建林, 等.新型统计检验聚类方法在精细化农业气象产量预报中的应用[J].中国农业气象, 2014, 35(2):187-194 doi: 10.3969/j.issn.1000-6362.2014.02.011
QIU M J, SONG Y B, WANG J L, et al. Application of newly developed cluster analysis of statistical test in fine agro-meteorological yield prediction[J]. Chinese Journal of Agrometeorology, 2014, 35(2):187-194 doi: 10.3969/j.issn.1000-6362.2014.02.011
[5]陈艳玲, 顾晓鹤, 官阿都, 等.基于遥感信息和WOFOST模型参数同化的冬小麦单产估算方法研究[J].麦类作物学报, 2018, 38(9):1127-1136 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201809017
CHEN Y L, GU X H, GONG A D, et al. Estimation of winter wheat assimilation based on remote sensing information and WOFOST crop model[J]. Journal of Triticeae Crops, 2018, 38(9):1127-1136 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201809017
[6]孙扬越, 申双和.作物生长模型的应用研究进展[J].中国农业气象, 2019, 40(7):444-459 doi: 10.3969/j.issn.1000-6362.2019.07.004
SUN Y Y, SHEN S H. Research progress in application of crop growth models[J]. Chinese Journal of Agrometeorology, 2019, 40(7):444-459 doi: 10.3969/j.issn.1000-6362.2019.07.004
[7]帅细强, 陆魁东, 黄晚华.不同方法在湖南省早稻产量动态预报中的比较[J].应用气象学报, 2015, 26(1):103-111 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201501011
SHUAI X Q, LU K D, HUANG W H. A comparative study on dynamic forecasting of early rice yield by using different methods in Hunan Province[J]. Journal of Applied Meteorological Science, 2015, 26(1):103-111 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201501011
[8]黄健熙, 武思杰, 刘兴权, 等.遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测[J].农业工程学报, 2012, 28(4):142-148 doi: 10.3969/j.issn.1002-6819.2012.04.023
HUANG J X, WU S J, LIU X Q, et al. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method[J]. Transactions of the CSAE, 2012, 28(4):142-148 doi: 10.3969/j.issn.1002-6819.2012.04.023
[9]杜春英, 李帅, 王晾晾, 等.基于历史产量丰歉影响指数的黑龙江省水稻产量动态预报[J].中国农业气象, 2010, 31(3):427-430 doi: 10.3969/j.issn.1000-6362.2010.03.019
DU C Y, LI S, WANG L L, et al. Dynamic prediction method for rice yield based on influence index for bumper or poor harvest from historic yield in Heilongjiang Province[J]. Chinese Journal of Agrometeorology, 2010, 31(3):427-430 doi: 10.3969/j.issn.1000-6362.2010.03.019
[10]邱美娟, 郭春明, 王冬妮, 等.基于气候适宜度指数的吉林省大豆单产动态预报研究[J].大豆科学, 2018, 37(3):445-451 http://d.old.wanfangdata.com.cn/Periodical/ddkx201803018
QIU M J, GUO C M, WANG D N, et al. Study of soybean yield forecast in Jilin Province based on climate suitability index method[J]. Soybean Science, 2018, 37(3):445-451 http://d.old.wanfangdata.com.cn/Periodical/ddkx201803018
[11]李树岩, 刘伟昌.基于气象关键气象因子的河南省夏玉米产量预报研究[J].干旱地区农业研究, 2014, 32(5):223-227 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201405038
LI S Y, LIU W C. Research on the yield prediction of summer maize in Henan Province based on meteorological key factors[J]. Agricultural Research in the Arid Areas, 2014, 32(5):223-227 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201405038
[12]邱美娟.基于动力与统计相结合的精细化冬小麦产量动态预报集成技术研究[D].北京: 中国气象科学研究院, 2014
QIU M J. Research on integrated technology of fine yield dynamic prediction of winter wheat based on the combination of impetus and statistics[D]. Beijing: China Academy of Meteorological Sciences, 2014
[13]邱美娟, 刘布春, 刘园, 等.两种不同产量历史丰歉气象影响指数确定方法在农业气象产量预报中的对比研究[J].气象与环境科学, 2019, 42(1):41-46 http://d.old.wanfangdata.com.cn/Periodical/hnqx201901007
QIU M J, LIU B C, LIU Y, et al. Comparative study of two different methods for determining meteorological impact index of historical yield in agrometeorological yield prediction[J]. Meteorological and Environmental Sciences, 2019, 42(1):41-46 http://d.old.wanfangdata.com.cn/Periodical/hnqx201901007
[14]王贺然, 张慧, 王莹, 等.基于两种方法建立辽宁大豆产量丰歉预报模型对比[J].中国农业气象, 2018, 39(11):725-738 doi: 10.3969/j.issn.1000-6362.2018.11.004
WANG H R, ZHANG H, WANG Y, et al. A comparative study on forecast model for soybean yield by using different statistic methods in Liaoning Province[J]. Chinese Journal of Agrometeorology, 2018, 39(11):725-738 doi: 10.3969/j.issn.1000-6362.2018.11.004
[15]赵东妮, 王艳华, 任传友, 等. 3种水稻趋势产量拟合方法的比较分析[J].中国生态农业学报, 2017, 25(3):345-355 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170305&flag=1
ZHAO D N, WANG Y H, REN C Y, et al. Comparative analysis of three fitting methods of rice trend yield[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3):345-355 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170305&flag=1
[16]房世波.分离趋势产量和气候产量的方法探讨[J].自然灾害学报, 2011, 20(6):13-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201106004
FANG S B. Exploration of method for discrimination between trend crop yield and climatic fluctuant yield[J]. Journal of Natural Disasters, 2011, 20(6):13-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201106004
[17]李心怡, 张祎, 赵艳霞, 等.主要作物产量分离方法比较[J].应用气象学报, 2020, 31(1):74-82
LI X D, ZHANG Y, ZHAO Y X, et al. Comparative study on main crop yield separation methods[J]. Journal of Applied Meteorological Science, 2020, 31(1):74-82
[18]徐敏, 吴洪颜, 张佩, 等.基于气候适宜度的江苏水稻气候年景预测方法[J].气象, 2018, 44(9):1200-1207 http://d.old.wanfangdata.com.cn/Periodical/qx201809008
XU M, WU H Y, ZHANG P, et al. Long-term prediction method of rice annual agricultural climate status in Jiangsu Province based on climatic suitability[J]. Meteorological Monthly, 2018, 44(9):1200-1207 http://d.old.wanfangdata.com.cn/Periodical/qx201809008
[19]邱美娟, 宋迎波, 王建林, 等.山东省冬小麦产量动态集成预报方法[J].应用气象学报, 2016, 27(2):191-200 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201602007
QIU M J, SONG Y B, WANG J L, et al. Integrated technology of yield dynamic prediction of winter wheat in Shandong Province[J]. Journal of Applied Meteorological Science, 2016, 27(2):191-200 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201602007
[20]魏瑞江, 王鑫.气候适宜度国内外研究进展及展望[J].地球科学进展, 2019, 34(6):584-595 http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201906004
WEI R J, WANG X. Progress and prospects of research on climatic suitability at home and abroad[J]. Advances in Earth Science, 2019, 34(6):584-595 http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201906004
[21]TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D7):7183-7192 doi: 10.1029/2000JD900719
[22]Lobell D B, Asner G P. Climate and management contributions to recent trends in U. S. agricultural yields[J]. Science, 2003, 299(5609):1032-1032 doi: 10.1126/science.1077838
[23]Almaraz J J, Mabood F, Zhou X, et al. Climate change, weather variability and corn yield at a higher latitude locale:Southwestern Quebec[J]. Climatic Change, 2008, 88(2):187-197

相关话题/气象 历史 作物 概率 统计