关键词:油菜; 生物量; 叶片形态; 模拟模型 Modeling of Biomass-Based Leaf Morphological Parameters on Main Stem for Rapeseed ( Brassica napus L.) ZHANG Wen-Yu, ZHANG Wei-Xin, GE Dao-Kuo, CAO Hong-Xin*, LIU Yan, XUAN Shou-Li, FU Kun-Ya, FENG Chun-Huan, CHEN Wei-Tao Institute of Agricultural Economics and Information / Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
AbstractTo quantify the relationships between main stem leaf morphological parameters for rapeseed and the corresponding leaf biomass, we conducted field experiments on varieties, transplanting densities, and fertilizer in 2011 to 2012, and 2012 to 2013 seasons. The biomass-based leaf morphological parameter models for rapeseed on main stem were constructed through observing leaf length, maximum leaf width, and leaf petiole length under various treatments, and analyzing the relationships between leaf morphological parameters and the corresponding leaf biomass. Because both of the leaf length and leaf width were positively proportional to the square root of the corresponding leaf biomass, meanwhile the leaf petiole length was positively proportional to the corresponding leaf length, the changes in the leaf length, the maximum leaf width, and the leaf petiole length with the changed of square root of the corresponding leaf biomass for different treatments could be described with linear function. The biomass-based leaf morphological parameter models were validated using independent experiment data, and the results showed that the model revealed satisfactory predictions of leaf length, leaf width, and leaf petiole length, except the simulation for leaf petiole length of Ningyou 16. The research provides a mechanistic method for linking the rapeseed growth model with the morphological model using organ biomass, and lays a foundation for the establishment of functional-structural plant models of rapeseed.
Keyword:Rapeseed ( Brassica napus L.); Biomass; Leaf morphology; Simulation model Show Figures Show Figures
图2 2012-2013年不同处理叶长随叶干重平方根的变化规律a、b、c和d分别对应归一化叶位区间(0, 0.185]、(0.185, 0.375]、(0.375, 0.750]和(0.750, 1.000]。Fig. 2 Relationship between leaf length and square root of leaf dry weight for different treatments from 2012 to 2013a, b, c, and d correspond to the interval of normalized leaf ranks (0, 0.185], (0.185, 0.375], (0.375, 0.750], and (0.75, 1.000], respectively.
图3 2012-2013年不同处理最大叶宽随叶干重平方根的变化规律a、b、c和d分别对应归一化叶位区间(0, 0.185]、(0.185, 0.375]、(0.375, 0.750]和(0.750, 1.000]。Fig. 3 Relationship between maximum leaf width and square root of leaf dry weight for different treatments from 2012 to 2013a, b, c, and d correspond to the interval of normalized leaf ranks (0, 0.185], (0.185, 0.375], (0.375, 0.750], and (0.750, 1.000], respectively.
表3 Table 3 表3(Table 3)
表3 最大叶宽模型及其参数显著性检验 Table 3 Significance test of maximum leaf width model and its parameter values
归一化叶位区间 Interval of normalized leaf ranks
品种 Cultivar
样本数 n
相关系数 r
r显著性阈值 Sig. threshold for r
F值显著性 Sig. for F
未标准化参数值 Unstandardized coefficient
t
(0, 0.185]
V1
18
0.994* * *
r(16, 0.001)=0.708
0.000
18.394
38.551* * *
V2
5
0.993* * *
r(3, 0.001)=0.991
0.000
22.296
17.251* * *
V3
20
0.992* * *
r(18, 0.001)=0.679
0.000
17.753
34.432* * *
(0.185, 0.375]
V1
58
0.997* * *
r(56, 0.001)=0.421
0.000
11.490
105.013* * *
V2
13
0.992* * *
r(11, 0.001)=0.801
0.000
10.732
27.121* * *
V3
47
0.996* * *
r(45, 0.001)=0.465
0.000
10.622
76.966* * *
(0.375, 0.750]
V1
61
0.997* * *
r(59, 0.001)=0.411
0.000
12.259
98.903* * *
V2
21
0.998* * *
r(19, 0.001)=0.665
0.000
12.530
63.283* * *
V3
81
0.995* * *
r(79, 0.001)=0.363
0.000
11.603
91.474* * *
(0.750, 1.000]
V1
30
0.990* * *
r(28, 0.001)=0.570
0.000
11.432
38.761* * *
V2
9
0.993* * *
r(7, 0.001)=0.898
0.000
11.495
24.183* * *
V3
25
0.982* * *
r(23, 0.001)=0.618
0.000
11.322
25.680* * *
表3 最大叶宽模型及其参数显著性检验 Table 3 Significance test of maximum leaf width model and its parameter values
图4 2012-2013年不同处理叶柄长随叶长的变化规律a和b分别对应归一化叶长区间(0, 0.185]和(0.185, 0.375]。Fig. 4 Relationship of leaf petiole length with leaf length for different treatments from 2012 to 2013a and b correspond to the interval of normalized leaf ranks (0, 0.185], and (0.185, 0.375], respectively.
表4 Table 4 表4(Table 4)
表4 叶柄长模型及其参数显著性检验 Table 4 Significance test of petiole length model and its parameter values
归一化叶位区间 Interval of normalized leaf ranks
品种 Cultivar
样本数 n
相关系数 r
r显著性阈值 Sig. threshold for r
F值显著性 Sig. for F
参数符号 Parameter symbol
未标准化参数值 Unstandardized coefficient
t
(0, 0.185]
V1
18
0.982* * *
r(16, 0.001)=0.708
0.000
LP1
0.651
20.509* * *
LP0
-1.001
-2.513*
V2
5
0.934*
r(3, 0.05)=0.878
0.020
LP1
0.759
4.513*
LP0
-2.691
-1.636
V3
19
0.983* * *
r(17, 0.001)=0.693
0.000
LP1
0.667
24.604* * *
LP0
-0.875
-2.603*
(0.185, 0.375]
V1
39
0.962* * *
r(37, 0.001)=0.507
0.000
LP1
0.389
21.912* * *
LP0
-0.588
-5.238* * *
V2
13
0.878* * *
r(11, 0.001)=0.801
0.000
LP1
0.268
6.070* * *
LP0
0.014
0.069
V3
46
0.981* * *
r(44, 0.001)=0.469
0.000
LP1
0.348
12.582* * *
LP0
-0.387
-2.913* *
表4 叶柄长模型及其参数显著性检验 Table 4 Significance test of petiole length model and its parameter values
图7 2011-2012年3个品种叶柄长实测值与模拟值比较Fig. 7 Comparison of observation and simulation of leaf petiole length for three cultivars from 2011 to 2012
表5 Table 5 表5(Table 5)
表5 2011-2012年油菜主茎叶片形态参数模型观察值与模拟值比较的统计参数 Table 5 Comparison of simulation and observation of rapeseed main stem leaf morphological parameter models from 2011 to 2012
形态参数 Morphological parameters
品种 Cultivar
观察值与模拟值比较的统计参数 Statistic parameters of simulation and observation
n
da (cm)
dap (%)
RMSE (cm)
r
Sig.
叶长 Leaf length
V1
54
-0.903
7.310
2.654
0.891* * *
r(52, 0.001)=0.435
V2
45
-0.796
7.950
3.834
0.805* * *
r(43, 0.001)=0.474
V3
50
-0.902
8.141
2.352
0.866* * *
r(48, 0.001)=0.451
最大叶宽 Maximum leaf width
V1
54
-0.464
8.643
1.351
0.905* * *
r(52, 0.001)=0.435
V2
45
-0.276
5.492
1.464
0.853* * *
r(43, 0.001)=0.474
V3
50
-0.241
5.001
1.127
0.879* * *
r(48, 0.001)=0.451
叶柄长 Leaf petiole length
V1
44
-0.520
9.587
1.602
0.798* * *
r(42, 0.001)=0.479
V2
41
1.099
18.472
1.633
0.804* * *
r(39, 0.001)=0.495
V3
38
-0.498
8.250
1.644
0.787* * *
r(36, 0.001)=0.513
表5 2011-2012年油菜主茎叶片形态参数模型观察值与模拟值比较的统计参数 Table 5 Comparison of simulation and observation of rapeseed main stem leaf morphological parameter models from 2011 to 2012
王汉中. 我国油菜产需形势分析及产业发展对策. , 2007, 29: 101-105Wang HZ. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. , 2007, 29: 101-105 (in Chinese with English abstract)[本文引用:1][CJCR: 1.087]
[2]
张树杰, 李玲, 张春雷. 播种期和种植密度对冬油菜籽粒产量和含油率的影响. , 2012, 23: 1326-1332Zhang SJ, LiL, Zhang CL. Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape. , 2012, 23: 1326-1332 (in Chinese with English abstract)[本文引用:2][CJCR: 1.904]
[3]
张伟欣, 曹宏鑫, 朱艳, 刘岩, 张文宇, 陈昱利, 傅坤亚. 油菜作物模型研究进展. , 2014, 16(1): 82-90Zhang WX, Cao HX, ZhuY, LiuY, Zhang WY, Chen YL, Fu KY. Research progress on rapeseed crop model. , 2014, 16(1): 82-90 (in Chinese with English abstract)[本文引用:1][CJCR: 0.281]
[4]
Pinto AC, GuarieiroL L N, RezendeM J C, RibeiroN M, TorresE A, LopesW A, de P PereiraP A, de AndradeJ B. Biodiesel: an overview. , 2005, 16: 1313-1330[本文引用:1][JCR: 1.253]
[5]
曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优, 陈煜利. 作物模型发展探讨. , 2011, 44: 3520-3528Cao HX, Zhao SL, Ge DK, Liu YX, LiuY, Sun JY, Yun YB, Zhang ZY, Chen YL. Discussion on development of crop models. , 2011, 44: 3520-3528 (in Chinese with English abstract)[本文引用:2][CJCR: 1.4]
[6]
PerttunenJ, SievänenR, NikinmaaE, SalminenH, SaarenmaaH, VäkeväJ. LIGNUM: a tree model based on simple structural units. , 1996, 77: 87-98[本文引用:1][JCR: 0.771]
[7]
Yang HP, Kang MZ, De ReffyeP, DingkuhnM. A dynamic, architectural plant model simulating resource-dependent growth. , 2004, 93: 591-602[本文引用:1][JCR: 0.771]
[8]
LopezG, Favreau RR, SmithC, DeJongM T. L-PEACH: a computer-based model to understand how peach trees grow. , 2010, 20: 983-990[本文引用:1]
[9]
WatanabeT, Hanan JS, Room PM, HasegawaT, NakagawaH, TakahashiW. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. , 2005, 95: 1131-1143[本文引用:1][JCR: 0.771]
[10]
刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. , 2009, 42: 4093-4099LiuY, Lu JF, Cao HX, Shi CL, Liu YX, Zhu DC, Sun JY, Yun YB, Wei XF, Tian PP, Bao TL. Main geometrical parameter models of rice blade based on biomass. , 2009, 42: 4093-4099 (in Chinese with English abstract)[本文引用:2][CJCR: 1.4]
[11]
刘永霞, 岳延滨, 刘岩, 曹宏鑫, 葛道阔, 魏秀芳. 基于生物量的水稻根系生长动态模型. , 2011, 27: 704-709Liu YX, Yun YB, LiuY, Cao HX, Ge DK, Wei XF. Biomass-based dynamic model for rice root system. , 2011, 27: 704-709 (in Chinese with English abstract)[本文引用:1][CJCR: 0.993]
[12]
Cao HX, LiuY, Liu YX, Hanan JS, Yue YB, Zhu DW, Lu JF, Sun JY, Shi CL, Ge DK, Wei XF, Yao AQ, Tian PP, Bao TL. Biomass-based rice (Oryza sativa L. ) aboveground architectural parameter models. , 2012, 11: 1621-1632[本文引用:1]
[13]
Evers JB, VosJ, YinX, RomeroP, van der PuttenP E L, StruikP C. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. , 2010, 61: 2203-2216[本文引用:1][JCR: 5.794]
[14]
GuoY, Ma YT, Zhan ZG, Li BG, DingkuhnM, LuquetD, de ReffyeP. Parameter optimization and field validation of the Functional-Structural model GREENLAB for maize. , 2006, 97: 217-230[本文引用:1][JCR: 0.771]
[15]
Hanan JS, Hearn AB. Linking physiological and architectural models of cotton. , 2003, 75: 47-77[本文引用:1][CJCR: 0.782]
[16]
Kiniry JR, Major DJ, Izaurralde RC, Williams JR, Gassman PW, MorrisonM, BergentineR, Zentner RP. EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. , 1995, 75: 679-688[本文引用:1][JCR: 0.921]
[17]
Petersen CT, JørgensenU, SvendsenH, HansenS, Jensen HE, Nielsen NE. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. , 1995, 4: 77-89[本文引用:1][JCR: 2.918]
[18]
HabekottéB. A model of the phenological development of winter oilseed rape (Brassica napus L. ). , 1997, 54: 127-136[本文引用:1][JCR: 2.608]
[19]
GabrielleB, DenoroyP, GosseG, JustesE, Andersen MN. Development and evaluation of a CERES-type model for winter oilseed rape. , 1998, 57: 95-111[本文引用:1][JCR: 2.608]
[20]
Robertson MJ, Holland JF, Kirkegaard JA, Smith CJ. Simulation Growth and Development of Canola in Australia. , 1999[本文引用:1]
[21]
Zhang CL, Li GM, Cao HX. Simulating Growth and Development of Winter Rape in Yangtze River Valley. , 6-10July, 2003. p 835[本文引用:1]
[22]
刘洪, 金之庆. 油菜发育动态模拟模型. , 2003, 14: 634-640LiuH, Jin ZQ. A phenological model to simulate rape development. , 2003, 14: 634-640 (in Chinese with English abstract)[本文引用:1][CJCR: 1.474]
[23]
廖桂平, 官春云. 甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究. , 2002, 28: 52-58Liao GP, Guan CY. Study on characteristics of dry matter accumulation, distribution and transfer of winter rapeseed (Brassica napus). , 2002, 28: 52-58 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[24]
刘铁梅, 胡立勇, 赵祖红, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: I. 模型的描述. , 2004, 26(1): 28-32Liu TM, Hu LY, Zhao ZH, Cao CG, Cao WX, Yan MC. A mechanistic of phasic and phenologial development in rape: I. Description of the model. , 2004, 26(1): 28-32 (in Chinese with English abstract)[本文引用:1][CJCR: 1.087]
[25]
曹宏鑫, 张春雷, 李光明, 张保军, 赵锁劳, 汪宝卿, 金之庆. 油菜生长发育模拟模型研究. , 2006, 32: 1530-1536Cao HX, Zhang CL, Li GM, Zhang BJ, Zhang SL, Wang BQ, Jin ZQ. Researches of simulation models of rape growth and development. , 2006, 32: 1530-1536 (in Chinese with English abstract)[本文引用:3][CJCR: 1.681]
[26]
汤亮, 曹卫星, 朱艳. 基于生长模型的油菜管理决策支持系统. , 2006, 22(11): 160-164TangL, Cao WX, ZhuY. Development of growth model-based decision support system for rapeseed management. , 2006, 22(11): 160-164 (in Chinese with English abstract)[本文引用:1][CJCR: 2.121]
[27]
廖桂平, 李锦卫, 欧中斌, 聂敏. 基于参数L-系统的油菜花朵与花序生长可视化研究. , 2009, 25(4): 150-156Liao GP, Li JW, Ou ZB, NieM. Visual growth of flower and inflorescence of rapeseed (Brassica napus L. ) based on parametric L-system. , 2009, 25(4): 150-156 (in Chinese with English abstract)[本文引用:1][CJCR: 2.121]
[28]
岳延滨, 朱艳, 曹宏鑫. 基于几何参数模型和OpenGL的油菜花朵可视化研究. , 2011, 27: 264-270Yue YB, ZhuY, Cao HX. Models and OpenGL-based visual technology for rapeseed (Brassica napus L. ) flower. , 2011, 27: 264-270 (in Chinese with English abstract)[本文引用:1][CJCR: 0.993]
[29]
Zhao LL, Wen WL, Peng YY, Guo XY, Lu SL, Du JJ. Geometric modeling of rape (Brassica napus L. ) during seeding stage. , 2011, (7): 1085-1087[本文引用:1][CJCR: 0.617]
[30]
GroerC, KniemeyerO, HemmerlingR, KurthW, BeckerH, Sorlin GB. A dynamic 3D model of rape (Brassica napus L. ) computing yield components under variable nitrogen fertilization regimes. , November 2007, 4. 1-4. 3[本文引用:2]
[31]
KniemeyerO. Rule-based modelling with the XL/GroIMP software. , 2004. pp 56-65[本文引用:1]
[32]
MüllerJ, WerneckeP, DiepenbrockW. LEAFC3-N: a nitrogen-sensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L. ). , 2005, 183: 183-210[本文引用:1][JCR: 2.326]
[33]
JullienA, MathieuA, Allirand JM, PinetA, de ReffyeP, CournedeP H, NeyB. Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model. , 2011, 107: 765-779[本文引用:3][JCR: 0.771]
[34]
JullienA, Allirand JM, MathieuA, AndrieuB, NeyB. Variations in leaf mass per area according to N nutrition, plant age, and leaf position reflect ontogenetic plasticity in winter oilseed rape (Brassica napus L. ). , 2009, 114: 188-197[本文引用:1][JCR: 2.608]
[35]
Cao HX, Zhang WY, Zhang WX, LiuY, Liu YX, Hanan JS, Chen YL, Yue YB, Zhang ZY, Ge DK. Biomass-based rapeseed (Brassica napus L. ) leaf geometric parameter model. , 2013. p 26[本文引用:3]
[36]
张伟欣. 基于生物量的油菜植株地上部形态结构模型研究. , 2013ZhangW X. Biomass-Based Rapeseed (Brassica napus L. ) Aboveground Morphological Structure Model. , 2013 (in Chinese with English abstract)[本文引用:3]
[37]
Cao HX, Hanan JS, LiuY, Liu YX, Yue YB, Zhu DW, Lu JF, Sun JY, Shi CL, Ge DK, Wei XF, Yao AQ, Tian PP, Bao TL. Comparison of crop model validation methods. , 2012, 11: 1274-1285[本文引用:1]