关键词:籼粳杂交稻; 甬优系列; 冠层结构; 光合特性 Canopy Structure and Photosynthetic Characteristics of Yongyou Series of Indica-Japonica Hybrid Rice under High-yielding Cultivation Condition JIANG Yuan-Hua, XU Ke, ZHAO Ke, SUN Jian-Jun, WEI Huan-He, XU Jun-Wei, WEI Hai-Yan, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng* Innovation Center of Rice Cultivation Technology in the Yangtze Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
AbstractCompared with japonica hybrid rice cultivars(B), conventional japonica rice cultivars (C) and indica hybrid rice cultivars (D), Yongyou series of indica-japonica hybrid rice cultivars (A) were adopted to analyze the lightened posture of leave, light distribution of canopy and photosynthetic characteristics of plant systematically. Results were as follows: (1) leaf length, leaf width of top three leaves showed the trend of A>B>D>C, canopy extinction coefficient showed the trend of C>D>B>A, leaf basic angle of top three leaves and relative height of the largest leaf area density were D>A>B>C, lower canopy leaf area density was C>B>A>D, plant height and the largest leaf area density showed the trend of A>D>B>C, leaf drop angle of top three leaves showed the trend of D>B>C>A, upper canopy leaf area density observed D>A>B>C, lower canopy relative light showed the trend of A>B>C>D, lower canopy relative light and canopy average relative light showed the trend of B>A>C>D; (2) population LAI and high valid leaf area rate showed the trend of D>A>B>C at heading, valid leaf area rate, spikelets per cm2 leaf area, filled grains per cm2 leaf area, total biomass, economic yield, chlorophyll ( a+b) content, carotenoid content, PSII actual photochemical efficiency, net photosynthetic rate, enzyme activities of SOD, POD, and CAT after heading showed the trend of A>B>C>D, harvest index and MDA content showed the trend of D>C>B>A. Therefore, compared with other three types of rice, Yongyou Series of indica-japonica hybrid rice had significant advantages in the canopy structure and photosynthetic characteristics, which are both normal ecological and physiological bases of high yield, and maybe an important way to improve the population productivity of inter-subspecific hybrid rice.
Keyword: Indica-japonica hybrid rice; Yongyou series; Canopy structure; Photosynthetic characteristics Show Figures Show Figures
表2 不同类型水稻品种主要冠层结构与光合性状的方差分析 Table 2 Analysis of variance of F-value of main canopy structure and physiological traits in different types of rice cultivars
变异来源 Source of variation
自由度 df
剑叶长度 FLL
剑叶叶基角 FLBA
叶面积指数 LAI
净光合速率 NPR
生物学产量 TBM
稻谷产量 GY
年度 Year
1
1.76
1.95
1.18
2.02
2.91
2.54
品种类型 Rice type
3
85.24* *
109.06* *
84.72* *
75.31* *
247.94* *
238.05* *
年度× 品种类型Year× rice type
3
0.57
0.52
0.11
1.23
0.19
0.17
* * Significant at the 0.01 probability level. FLL: flag leaf length; FLBA: flag leaf basical angle; LAI: leaf area index; NPR: net photosynthetic rate; TBM: total biomass; GY: grain yield. * * 表示在0.01水平上差异显著。
表2 不同类型水稻品种主要冠层结构与光合性状的方差分析 Table 2 Analysis of variance of F-value of main canopy structure and physiological traits in different types of rice cultivars
表3 不同类型水稻品种上三叶的配置 Table 3 Characteristics of top three leaves in different types of rice cultivars
性状Characteristic
叶位Leaf position
A
B
C
D
叶长Leaf length (cm)
倒一叶Flag leaf
61.19 a
45.37 c
32.81 d
49.94 b
倒二叶Second leaf
67.26 a
51.00 c
37.62 d
61.43 b
倒三叶Third leaf
64.55 a
50.07 c
35.22 d
55.84 b
叶宽Leaf width (cm)
倒一叶Flag leaf
2.71 a
2.29 c
1.93 d
2.37 b
倒二叶Second leaf
2.24 a
1.88 c
1.65 d
2.06 b
倒三叶Third leaf
1.96 a
1.81 b
1.55 c
1.84 b
叶基角Leaf basic angle (° )
倒一叶Flag leaf
11.05 b
7.98 c
4.80 d
14.36 a
倒二叶Second leaf
16.72 b
12.67 c
8.84 d
21.03 a
倒三叶Third leaf
22.02 b
17.65 c
14.93 d
26.57 a
披垂度Leaf drop angle (° )
倒一叶Flag leaf
1.29 d
2.93 b
2.41 c
5.36 a
倒二叶Second leaf
1.87 d
8.07 b
3.88 c
10.84 a
倒三叶Third leaf
2.76 d
13.27 b
8.37 c
16.09 a
Abbreviations are the same as those given in Table 1. Values followed by different letters are significantly different at the 0.05 probability level. 缩写同表1。数字后不同字母表示不同类型品种在0.05水平上差异显著。
表3 不同类型水稻品种上三叶的配置 Table 3 Characteristics of top three leaves in different types of rice cultivars
2.2.3 不同类型水稻品种群体叶面积密度分布特征 采用Logistic方程对相对累计向上叶面积指数进行模拟, 并对其求导, 得到叶面积密度分布方程(表4), 拟合度较好, 均在0.98以上。从图1-a可以看出, 不同类型水稻冠层上部叶面积密度、冠层下部叶面积密度、最大叶面积密度及其出现的相对高度存在差异, 其中冠层上部的叶面积密度呈D> A> B> C趋势, 冠层下部的叶面积密度呈C> B> A> D趋势。根据方程可以求出的最大叶面积密度出现的相对高度(hmax)及最大叶面积密度(ρ max)表现为D> A> B> C和A> D> B> C (表4)。 图1 Fig. 1
图1 不同类型水稻品种抽穗期群体相对叶面积密度和透光率分布特征A: 籼粳杂交稻; B: 杂交粳稻; C: 常规粳稻; D: 杂交籼稻。Fig. 1 The distribution of relative leaf area density and light transmission in different types of rice cultivarsA: indica-japonica hybrid rice; B: japonica hybrid rice; C: conventional japonica rice; D: indicahybrid rice.
表4 Table 4 表4(Table 4)
表4 不同类型水稻品种抽穗期群体叶面积密度分布特征 Table 4 Distribution of leave area density in different types of rice cultivars
类型 Rice type
方程特征参数Equation parameter
R2
hmax
ρ max
a
b
c
A
99.88
198.48
9.83
98.95
0.54
2.45
B
100.18
159.88
9.65
98.73
0.53
2.42
C
99.19
121.59
9.61
99.27
0.50
2.38
D
99.05
219.72
9.71
99.48
0.56
2.40
R2: the determination coefficient of the equation; hmax: relative height of the largest leaf area density; ρ max: the largest leaf area density. Abbreviations are the same as given in Table 1. 缩写同表1。R2: 方程决定系数; hmax: 最大叶面积密度出现的相对高度; ρ max: 最大叶面积密度。
表4 不同类型水稻品种抽穗期群体叶面积密度分布特征 Table 4 Distribution of leave area density in different types of rice cultivars
2.2.4 不同类型水稻品种群体内光照分布特征 采用Richards方程模拟冠层内相对光照强度(表5), 拟合度较好, 均在0.98以上。从图1-b可以看出, 不同类型水稻品种冠层相对光照强度存在差异, 冠层上部呈A> B> C> D趋势, 冠层下部呈B> A> C> D趋势。根据方程求得冠层的平均相对光照强度(Imean)和消光系数(ε ), 分别表现为B> A> C> D和C> D> B> A (表5)。 表5 Table 5 表5(Table 5)
表5 不同类型水稻品种群体光照分布特征 Table 5 Distribution of light distribution in different types of rice cultivars
类型 Rice type
方程特征参数Equation parameter
R2
Imean
ε
A
K
B
N
A
100.18
19.34
1204329.02
3.21
99.32
43.16
0.55
B
100.52
12.21
4217.55
1.89
98.73
43.08
0.70
C
100.38
13.64
29392.81
2.18
99.27
38.03
0.73
D
102.09
19.53
11639421.49
3.41
99.09
34.08
0.71
Abbreviations are the same as given in Table 1. R2: the determination coefficient of the equation; Imean: canopy average relative light; ε : canopy extinction coefficient. 缩写同表1。R2: 方程决定系数; Imean: 冠层的平均相对光照强度; ε : 消光系数。
表5 不同类型水稻品种群体光照分布特征 Table 5 Distribution of light distribution in different types of rice cultivars
表6 不同类型水稻抽穗期LAI组成及粒叶比 Table 6 LAI component and grain-leaf ratio in different types of rice cultivars
品种类型 Rice type
群体叶面积指数 Population LAI
有效叶面积率 Valid LA rate (%)
高效叶面积率 High valid LA rate (%)
颖花/叶 Spikelets per cm2 leaf area
实粒/叶 Filled grains per cm2 leaf area
A
7.94 a
97.11 a
76.94 b
0.75 a
0.63 a
B
7.81 b
95.64 ab
74.64 c
0.65 b
0.56 b
C
7.66 c
94.08 b
73.02 d
0.58 c
0.53 c
D
8.04 a
91.22 c
78.99 a
0.57 c
0.47 d
Abbreviations are the same as given those in Table 1. Values followed by different letters are significantly different at the 0.05 probability level. 缩写同表1。数字后不同字母表示不同类型品种在0.05水平上差异显著。
表6 不同类型水稻抽穗期LAI组成及粒叶比 Table 6 LAI component and grain-leaf ratio in different types of rice cultivars
2.3.3 生物产量、经济产量与经济系数 不同类型水稻品种生物产量、经济产量和经济系数存在显著差异(表7)。生物产量和经济产量均呈A> B> C> D趋势, A生物产量平均为24.69 t hm-2, 较B、C、D分别高6.19%、12.65%和23.45%; A经济产量平均为12.15 t hm-2, 较B、C、D分别高5.41%、11.48%和19.84%。收获指数类型间差异较小, 由高到低顺序为D、C、B、A。 表7 Table 7 表7(Table 7)
表7 不同类型水稻品种产量与收获指数 Table 7 Yield and harvest index in different types of rice cultivars
品种类型 Rice type
生物产量 Biomass (kg hm-2)
经济产量 Economic yield (kg hm-2)
收获指数 Harvest index
A
21.25 a
12.15 a
0.492 b
B
19.88 b
11.53 b
0.496 b
C
18.74 c
10.90 c
0.497 b
D
17.30 d
10.14 d
0.507 a
Abbreviations are the same as those given in Table 1. Values followed by different letters are significantly different at the 0.05 probability level. 缩写同表1。数字后不同字母表示不同类型品种在0.05水平上差异显著。
表7 不同类型水稻品种产量与收获指数 Table 7 Yield and harvest index in different types of rice cultivars
邓启云, 袁隆平, 蔡义东, 刘建丰, 赵炳然, 陈立云. 超级杂交稻模式株型的光合优势. , 2006, 32: 1287-1293Deng QY, Yuan LP, Cai YD, Liu JF, Zhao BR, Chen LY. Photosynthetic advantages of model plant-type in super hybrid rice. , 2006, 32: 1287-1293 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[3]
王昆, 罗琼, 蔡庆红, 蒋敏明, 匡建业, 丁秋凡, 唐启源. 水稻株型的研究进展. , 2013, (17): 1-4WangK, LuoQ, Cai QH, Jiang MM, Kuang JY, Ding QF, Tang QY. Study progresses of rice plant type. , 2013, (17): 1-4 (in Chinese with English abstract)[本文引用:1][CJCR: 0.451]
[4]
付景, 杨建昌. 超级稻高产栽培生理研究进展. , 2011, 25: 343-348FuJ, Yang JC. Research advances in physiology of super rice under high-yielding cultivation. , 2011, 25: 343-348 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[5]
Peng SB, Khush GS, VirkP, Tang QY, Zou YB. Progress in ideotype breeding to increase rice yield potential. , 2008, 108: 32-33[本文引用:]
[6]
Peng SB, Tang QY, Zou YB. Current status and challenges of rice production in China. , 2009, 12: 3-8[本文引用:]
[7]
Donald CM. The breeding of crop ideotypes. , 1968, 17: 385-403[本文引用:1][JCR: 1.643]
[8]
Xiang ZF, Yang WY, Ren WJ, Wang XC. Effects of uniconazole on nitrogen metabolism and grain protein content of rice. , 2005, 12: 107-113[本文引用:1][CJCR: 0.3579]
[9]
杨守仁, 张龙步, 陈温福, 徐正进, 王进民. 水稻超高产育种理论和方法, , 1996, 10: 115-120Yang SR, Zhang LB, Chen WF, Xu ZJ, Wang JM. Theories and methods of rice breeding for maximum yield. , 1996, 10: 115-120 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[10]
袁隆平. 杂交水稻超高产育种. , 1997, 12(6): 1-3Yuan LP. Hybrid rice breeding for super high yield. , 1997, 12(6): 1-3 (in Chinese)[本文引用:1][CJCR: 0.605]
[11]
周开达, 汪旭东, 李仕贵, 李平, 黎汉云, 黄国寿, 刘太清, 沈茂松. 亚种间重穗型杂交稻研究. , 1997, 30(5): 91-93Zhou KD, Wang XD, Li SG, LiP, Li HY, Huang GS, Liu TQ, Shen MS. The study on heavy panicle type of inter-subspecific hybrid rice (Oryza sativa L. ). , 1997, 30(5): 91-93 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[12]
黄耀祥, 林青山. 水稻超高产、特优质株型模式的构想和育种实践. , 1994, (4): 1-6Huang YX, Lin QS. Thinking and practice on rice breeding method for high yield and good grain quality. , 1994, (4): 1-6 (in Chinese with English abstract)[本文引用:1][CJCR: 0.6672]
[13]
张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. , 2013, 46: 686-704Zhang HC, ZhangJ, Gong JL, ChangY, LiM, GaoH, Dai QG, Huo ZY, XuK, Wei HY. The productive advantages and formation mechanisms of “indica rice to japonica rice”. , 2013, 46: 686-704 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[14]
龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻光合物质生产与转运特征的差异. , 2014, 40: 497-510Gong JL, Xing ZP, Hu YJ, Zhang HC, Dai QG, Huo ZY, XuK, Wei HY, GaoH. Difference of characteristics of photosynthesis, matter production and translocation between indica and japonica super rice. , 2014, 40: 497-510 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[15]
杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. , 2006, 32: 949-955Yang JC, WangP, Liu LJ, Wang ZQ, Zhu QS. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. , 2006, 32: 949-955 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[16]
熊洁, 陈功磊, 王绍华, 丁艳锋. 江苏省不同年代典型粳稻品种的产量及株型差异. , 2011, 34(5): 1-6XiongJ, Chen GL, Wang SH, Ding YF. The difference in grain yield and plant type among typical japonica varieties in different years in Jiangsu Province. , 2011, 34(5): 1-6 (in Chinese with English abstract)[本文引用:1][CJCR: 0.916]
[17]
张庆, 殷春渊, 张洪程, 魏海燕, 马群, 杭杰, 李敏, 李国业. 水稻氮高产高效与低产低效两类品种株型特征差异研究. , 2010, 36: 1011-1021ZhangQ, Yin CY, Zhang HC, Wei HY, MaQ H J, LiM, LiG Y. Differences of plant-type characteristics between rice cultivars with high and low levels in yield and nitrogen use efficiency. , 2010, 36: 1011-1021 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[18]
李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 不同氮利用效率基因型水稻茎秆特性比较. , 2012, 38: 1277-1285LiM, Zhang HC, YangX, Ge MJ, MaQ, Wei HY, Dai QG, Huo ZY, XuK. Comparison of culm characteristics with different nitrogen use efficiencies for rice cultivars. , 2012, 38: 1277-1285 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[19]
袁隆平, 武小金, 颜应成, 罗孝和. 水稻广谱广亲和系的选育策略. , 1997, 30(4): 1-8Yuan LP, Wu XJ, Yan YC, Luo XH. A strategy for developing wide spectrum compatibility rice line. , 1997, 30(4): 1-8 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[20]
Li RH, Jiang TB, Xu CG, Li XH, Wang XK. Relationship between morphological and genetic differentiation in rice (Oryza sativa L. ). , 2000, 114: 1-8[本文引用:1][JCR: 1.643]
[21]
马荣荣, 许德海, 王晓燕, 禹盛苗, 金千瑜, 欧阳由男, 朱练峰. 籼粳亚种间杂交稻甬优6号超高产株形特征与竞争优势分析. , 2007, 21: 282-286Ma RR, Xu DH, Wang XY, Yu SM, Jin QY, Yu SM, Ou-YangY N, ZhuL F. Competition advantage on plant morphology of Yongyou 6: an yield indica-japonica super hybrid rice. , 2007, 21: 282-286 (in Chinese with English abstract)[本文引用:3][CJCR: 1.494]
[22]
许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. , 2007, 21: 281-286Xu DH, Wang XY, Ma RR, Yu SM, Zhu LF, Ou-YangY N, JinQ Y. Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou6. , 2007, 21: 281-286 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[23]
Campbell CS, Heilman JL, Mclnnes KJ, Wilson LT, Medley JC, Wu GW, Cobos DR. Seasonal variation in radiation use efficiency of irrigated rice. , 2001, 110: 45-54[本文引用:1]
[24]
ZhangL, van der WerfW, BastiaansL, ZhangS, LiB, Spiertz J HJ. Light interception and utilization in relay intercrops of wheat and cotton. , 2008, 107: 29-42[本文引用:1][JCR: 2.474]
[25]
陈雨海, 余松烈, 于振文. 小麦生长后期群体光截获量及其分布与产量的关系. , 2003, 29: 730-734Chen YH, Yu SL, Yu ZW. Relationship between amount or distribution of PAR interception and grain output of wheat communities. , 2003, 29: 730-734 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[26]
Chen WF, Xu ZJ, Zhang LB, Zhou HF, Yang SR. Effects of different panicle type on canopy properties light distribution and dry matter production of rice population. , 1995, 21: 83-89[本文引用:2][CJCR: 1.667]
[27]
吕川根, 邹江石, 胡凝, 姚克敏. 水稻叶片形态对冠层特性和光合有效辐射传输的影响. , 2007, 23: 501-508Lü CG, Zou JS, HuN, Yao KM. Effects of morphological factors on canopy structure and transmission of photosynthetically active radiation in rice. , 2007, 23: 501-508 (in Chinese with English abstract)[本文引用:2][CJCR: 0.895]
[28]
李迪秦, 唐启源, 秦建权, 张运波, 郑华英, 杨胜海, 陈立军, 邹应斌. 施氮与氮管理模式对超级稻产量和辐射利用率的影响. , 2010, 24: 809-814Li DQ, Tang QY, Qin JQ, Zhang YB, Zheng HY, Yang SH, Chen LJ, Zou YB. Effects of nitrogen management patterns on grain yield, solar radiant use efficiency in super hybrid rice. , 2010, 24: 809-814 (in Chinese with English abstract)[本文引用:2][CJCR: 1.237]
[29]
李绪孟, 王小卉, 郑华斌, 黄璜. 水稻群体冠层结构及其光分布研究进展. , 2012, 26: 591-595Li XM, Wang XH, Zheng HB, HuangH. Research progress on canopy structure of and its light distribution in rice. , 2012, 26: 591-595 (in Chinese with English abstract)[本文引用:1][JCR: 2.474]
[30]
PengS, Gassman KG, Virmani SS, SheehyJ, Khush GS. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential. , 1999, 39: 1552-1559[本文引用:1][JCR: 1.513]
[31]
YangJ, PengS, ZhangZ, WangZ, Visperas RM, ZhuQ. Grain yield and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. , 2002, 42: 766-772[本文引用:2][JCR: 1.513]
[32]
凌启鸿, 杨建昌. 水稻群体“粒叶比”与高产栽培途径的研究. , 1986, 19(3): 1-8Ling CH, Yang JC. Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. , 1986, 19(3): 1-8 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[33]
杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. , 2006, 39: 1336-1345Yang JC, DuY, Wu CF, Liu LJ, Wang ZQ, Zhu QS. Growth and development characteristics of super-high-yielding mid-season japonica rice. , 2006, 39: 1336-1345 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[34]
李敏, 张洪程, 杨雄, 葛梦婕, 魏海燕, 戴其根, 霍中洋, 许轲. 高产氮高效型粳稻品种的叶片光合及衰老特性研究. , 2013, 27: 168-176LiM, Zhang HC, YangX, Ge MJ, Wei HY, Dai QG, Huo ZY, XuK. Leaf photosynthesis and senescence characteristics of japonica rice cultivars with high yield and high N-efficiency. , 2013, 27: 168-176 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]