摘要通过田间试验, 研究了种植模式(玉米单作、大豆单作、玉米-大豆套作)和施氮水平(0、180、240 kg N hm-2)对作物产量和大豆光合特性、干物质积累的影响。结果表明, 大豆叶片Pn、Gs、Ci、Tr和植株干物质积累量随生育时期的推移呈先增加后降低的趋势。与单作相比, 套作处理大豆的Pn、Gs、Tr在V5期(玉米大豆共生期)显著降低, 但在R2、R4、R6期(玉米收获后)无显著差异, 地下部、地上部及总干物质积累量在各生育时期呈降低趋势, R4~R6期的作物生长率和经济系数则显著提高。玉米-大豆套作体系下, 施氮显著提高了大豆花后叶片Pn、Gs、Tr和植株地下部、地上部及总干物质积累量, 增加了大豆单株荚数和产量, 与习惯施氮(240 kg N hm-2)相比, 减量施氮处理(180 N kg hm-2)大豆的Pn在R4、R6期提高了3.57%、11.82%, 总干物质积累量在R6、R8期提高了5.06%、10.21%, 单株荚数、产量提高了8.30%、10.15%。减量施氮处理下, 玉米-大豆套作系统的总产量最高, 总经济系数为0.49, LER达2.17。玉米-大豆套作减量一体化施肥有利于提高大豆光合特性和干物质积累, 提高大豆产量和玉米-大豆套作系统总产。
关键词:减量施氮; 光合特性; 干物质积累; 产量; 大豆; 玉米-大豆套作 Effect of Reduced N Application on Crop Yield in Maize-Soybean Intercropp-ing System LIU Xiao-Ming1, YONG Tai-Wen1,*, SU Ben-Ying1, LIU Wen-Yu1, ZHOU Li1, SONG Chun1,2, YANG Feng1, WANG Xiao-Chun1, YANG Wen-Yu1 1Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest, Ministry of Agriculture / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
2Institute of Ecological and Environmental Sciences, College of Resources and Environment, Sichuan Agricultural University, Chengdu 611130, China
Fund: AbstractMaize-soybean strip relay intercropping pattern is widely adopted in Southeast China. Whereas the traditional fertilized measures used by farmers are not good for high yield of soybean. In order to get high yield for both maize and soybean in this system, a field experiment was conducted to investigate the effect of reduced N application on photosynthetic characteristics and dry matter accumulation of soybean, and the system crop yield. The experiment included three planting patterns (maize monocropping, soybean monocropping and maize-soybean relay strip intercropping) and three rates of N fertilizer application (0, 180, 240 kg ha-1). The results demonstrated that, the net photosynthetic rate (Pn), transpiration rate (Gs), stomatal conductance (Ci), photosynthetic capacity (Tr), dry matter accumulation of soybean increased initially and then decreased in the later stage. Compared with soybean monocropping, thePn,Gs, andTr of intercropped soybean decreased significantly in the intergrowth stage (V5), but had no significant differences at R2, R4, and R6 stages. Although the below-ground, above-ground and total dry matter accumulation of soybean significantly decreased during the whole growth period, the crop growth rate from R4 to R6 stages and economic coefficient significantly increased. In the maize-soybean relay strip intercropping system, N application significantly enhanced thePn,Gs,Tr, dry matter accumulation, pod number per plant, and grain yield of soybean. Compared with the conventional N application (240 N kg ha-1),Pn of soybean under the reduced amount of N application (180 kg N ha-1) increased by 3.57% and 11.82% at R4 and R6 stages, respectively. Furthermore, the total dry matter accumulation increased by 5.06% and 10.21% at R6 and R8 stages, and pod number per plant and grain yield increased by 8.30% and 10.15%, respectively. Finally, the maize-soybean relay strip intercropping system possessed the highest yield under the N application rate of 180 kg N ha-1, with the economic coefficient and land equivalent ratio (LER) of 0.49 and 2.17, respectively. Taken together, the reduced N application in maize-soybean relay strip intercropping system can increase the yield of soybean and whole the system through improving soybean photosynthetic characteristics and enhancing dry matter accumulation.
Keyword:Reduced N application; Photosynthetic characteristics; Dry matter accumulation; Yield; Soybean; Maize-soybean intercropping Show Figures Show Figures
氮肥在农业生产中占有重要地位, 施入土壤中的氮肥50%以上通过氮素损失途径进入大气和水体中, 造成严重的生态环境问题, 如温室效应增加、水体富营养化等[ 1, 2]。我国是世界上最大的氮肥生产国和消费国, 且氮肥利用水平远低于发达国家, 由氮肥损失引发的生态环境问题已成为众多专家和****共同关注的焦点[ 3]。减量施氮正是在这种背景下发展起来的一种高效施氮方式。众多研究表明, 适当减少氮肥施用量不会对作物产量产生显著影响, 而且显著提高氮肥利用效率, 并从氮肥损失、土壤氮素转化、土壤微生物等方面进行了深层次的机制探讨。邹晓锦等[ 4]研究发现, 与习惯施肥相比, 氮肥减量10%和20%处理的玉米产量并没有降低, 而氮肥利用效率则显著增加; 战秀梅等[ 5]研究氮肥减量后移对春玉米的影响表明, 与习惯施肥相比, 氮肥利用率提高了20.7%, 氮的吸收利用效率和收获指数也显著提高; Constantin等[ 6]研究填闲作物、免耕和减氮处理的影响发现, 减量施氮降低了氮肥的淋溶、土壤有机氮以及土壤反硝化作用和氨挥发所带来的氮肥损失; Ruan等[ 7]研究减量施氮对蔬菜土壤线虫群体和作物产量影响表明, 与习惯施氮相比, 减量施氮并没有降低番茄的产量, 且提高了土壤线虫群落结构, 降低了根瘤病的丰度。前人关于减量施氮的研究大多集中在单一作物或在当地条件下[ 4, 5, 6, 7], 对西南地区近几年发展起来的玉米-大豆带状复合种植模式尚未见报道。 玉米-大豆带状复合种植模式自推广以来, 迅速发展, 推广面积逐年扩大, 对当地农民增收和农业增产作出重要贡献, 已成为四川省和农业部的主推模式[ 8, 9]。该模式中的大豆替代了传统玉米-甘薯套作模式中的甘薯, 改变了作物间的作用关系和作物的生态地位, 促进了玉米生长, 提高了玉米产量, 但传统的根区穴施施肥方式下, 大豆的产量和氮肥利用效率均显著下降[ 10, 11], 不利于该模式作物间和谐生长和进一步推广应用。因此, 本试验在单作和套作模式下, 研究不同施氮量对大豆生育关键时期的光合特性、干物质积累以及作物产量的影响, 旨在探明改变作物施肥方式后, 套作大豆在受前期遮阴的影响下, 玉米收获后大豆的光合特性、干物质积累的恢复状况, 以及它们对大豆产量的影响, 为玉米-大豆带状复合种植模式施肥技术的优化和双高产的形成奠定理论基础。 1 材料与方法1.1 试验点及供试品种试验于2012年3月至2013年10月在四川省现代粮食产业(仁寿)示范基地进行。2012年基础土壤pH 6.8, 含有机质17.26 g kg-1、全氮0.90 g kg-1、全磷0.50 g kg-1、全钾14.28 g kg-1、碱解氮77.35 mg kg-1、速效磷22.83 mg kg-1和速效钾196.63 mg kg-1。供试玉米品种为登海605, 由山东登海种业股份有限公司提供; 大豆品种为南豆12, 由四川省南充市农业科学研究所提供。 1.2 试验设计采用二因素裂区设计, 主因素为种植模式(图1), 分别为玉米单作(MM), 大豆单作(SS), 玉米-大豆套作(IMS); 副因素为玉米大豆施氮总量, 分别为NN不施氮(对照), RN减量施氮(180 N kg hm-2, 根据当地玉米施氮量确定), CN习惯施氮(240 N kg hm-2, 根据当地玉米与大豆的总施氮量确定), 且玉米与大豆施氮比为3∶1, 共9个处理, 重复3次。每个处理连续种3带, 带长6 m、带宽2 m, 小区面积36 m2。玉米单作和大豆单作采用等行距种植, 玉米行距100 cm、大豆行距50 cm, 玉米穴距17 cm, 大豆穴距34 cm, 玉米穴留1株, 大豆穴留2株; 玉米-大豆套作采用宽窄行种植, 玉米宽行160 cm, 窄行40 cm, 玉米宽行内种2行大豆, 大豆行距40 cm, 玉米与大豆间距60 cm, 穴距17 cm, 玉米穴留1株, 密度每公顷5.85万株, 大豆穴留2株, 密度每公顷11.7万株。保证在单、套作方式下, 各作物单位土地面积的种植密度和施肥水平一致。玉米氮肥分2次施用, 即玉米底肥和大喇叭口期追肥, 大豆氮肥一次性施用。玉米单作和大豆单作按传统株间穴施方式施肥。玉米-大豆套作体系按玉米、大豆一体化施肥方式, 玉米底肥统一按株间穴施72 kg N hm-2实施; 玉米大喇叭口期追肥则与大豆磷钾肥混合一起同时施用, 在玉米、大豆之间, 距玉米25 cm处开沟施肥, 各作物氮肥施用方式及施用量见表1; 单、套作玉米及单作大豆的磷钾肥随底肥施用, 每公顷玉米施用量为P2O5 105 kg、K2O 112.5 kg, 每公顷大豆施用量为P2O5 63 kg、K2O 52.5 kg。2012年, 玉米4月1日播种, 7月29日收获; 大豆6月10日播种, 10月31日收获; 2013年, 玉米4月3日播种, 8月1日收获; 大豆6月11日播种, 10月29日收获。 图1 Fig. 1
图2 种植模式和施氮水平对大豆叶片光合特性的影响SS: 大豆单作; IS: 大豆套作; NN: 不施氮; RN: 减氮量; CN: 习惯用氮。图柱上的小写字母表示处理间差异在0.05水平显著。Fig. 2 Effect of different N application rates and planting patterns on leaf photosynthesis characteristic of soybeanSS: soybean monocropping; IS: soybean intercropping; NN: zero N application; RN: reduced N application; CN: conventional N application.Bars superscripted by different small letters are significantly different among different treatments at 0.05 probability level.
图3 种植模式和施氮水平对大豆干物质积累的影响SS: 大豆单作; IS: 大豆套作; NN: 不施氮; RN: 减氮量; CN: 习惯用氮。Fig. 3 Effect of different N application rates and planting patterns on dry matter accumulation of soybeanSS: soybean monocropping; IS: soybean intercropping; NN: zero N application; RN: reduced N application; CN: conventional N application.
表2 种植模式和施氮水平对大豆作物生长率的影响 Table 2 Effect of different N application rates and planting patterns on crop growth rate of soybean (g m-2 d-1)
施氮水平 N application amount
2012
2013
V5-R2
R2-R5
V5-R2
R2-R4
R4-R6
SS
IS
SS
IS
SS
IS
SS
IS
SS
IS
不施氮 Zero N
7.93 b
4.02 a
9.19 a
9.73 b
8.67 b
3.64 b
8.48 a
5.61 b
8.23 a
8.98 a
减氮量 Reduced N
11.12 a
4.80 a
7.18 b
11.97 a
8.74 ab
5.60 a
8.64 a
8.92 a
7.14 a
10.96 a
习惯用氮 Conventional N
11.91 a
4.43 a
7.12 b
10.96 ab
10.04 a
4.33 ab
9.44 a
10.05 a
4.64 a
10.62 a
平均 Mean
10.32 a
4.42 b
7.83 b
10.89 a
9.15 a
4.52 b
8.86 a
8.19 a
6.67 b
10.19 a
SS: 大豆单作; IS: 大豆套作。同列中标以不同字母的值在0.05水平上差异显著。 SS: soybean monocropping; IS: soybean intercropping. Values followed by different letters within a column are significantly different at 0.05 probability level.
表2 种植模式和施氮水平对大豆作物生长率的影响 Table 2 Effect of different N application rates and planting patterns on crop growth rate of soybean (g m-2 d-1)
表3 种植模式和施氮水平对大豆产量构成因素的影响 Table 3 Effect of different N application rates and planting patterns on yield components of soybean
施氮水平 N application amount
单株荚数Pod No. per plant
单荚粒数Seed No. per pod
百粒重 100-seed weight (g)
SS
IS
SS
IS
SS
IS
2012
不施氮 Zero N
77.41 ab
59.28 b
1.59 a
1.85 a
20.14 a
21.75 a
减氮量 Reduced N
85.44 a
89.83 a
1.61 a
1.83 a
18.98 b
21.70 a
习惯用氮 Conventional N
72.33 b
84.41 a
1.54 a
1.77 a
18.99 b
21.01 a
平均Mean
78.40 a
77.84 a
1.58 b
1.82 a
19.37 b
21.49 a
2013
不施氮 Zero N
57.25 a
50.63 b
1.51 b
1.64 a
19.47 a
19.77 a
减氮量 Reduced N
55.91 a
67.25 a
1.66 a
1.59 a
19.50 a
20.17 a
习惯用氮 Conventional N
47.03 b
60.63 a
1.58 ab
1.63 a
20.12 a
19.60 a
平均Mean
53.40 b
59.50 a
1.58 a
1.62 a
19.70 a
19.85 a
SS: 大豆单作; IS: 大豆套作; 同列中标以不同字母的值在0.05水平上差异显著。 SS: soybean monocropping; IS: soybean intercropping. Values followed by different letters within a column are significantly different at 0.05 probability level.
表3 种植模式和施氮水平对大豆产量构成因素的影响 Table 3 Effect of different N application rates and planting patterns on yield components of soybean
表4 种植模式和施氮水平对玉米、大豆产量及经济系数的影响 Table 4 Effect of different N application rates and planting patterns on yield and economic coefficient of maize and soybean
施N水平 N application amount
作物产量 Crop yield (kg hm-2)
经济系数 Economic coefficient
玉米 Maize
大豆 Soybean
玉米-大豆 Maize-soybean
玉米 Maize
大豆 Soybean
玉米-大豆 Maize-soybean
MM
IM
SS
IS
MM
IM
SS
IS
2012
不施氮 Zero N
6378.5 b
6095.0 b
1552.1 b
1567.3 c
7662.2 c
0.47 b
0.46 b
0.39 a
0.48 ab
0.47 b
减氮量 Reduced N
7115.5 a
6790.5 a
1788.7 a
2364.1 a
9154.6 a
0.49 a
0.48 a
0.37 a
0.49 a
0.48 a
习惯用氮 Conventional N
7038.0 a
6346.5 b
1341.9 c
2176.8 b
8523.3 b
0.49 a
0.47 b
0.35 b
0.47 b
0.47 b
平均Mean
6844.0 a
6410.7 a
1560.9 b
2036.1 a
0.48 a
0.47 a
0.37 b
0.48 a
2013
不施氮 Zero N
6867.7 b
5350.2 b
1954.3 ab
1594.1 b
6944.3 b
0.48 a
0.49 b
0.37 a
0.42 a
0.48 a
减氮量 Reduced N
8330.7 a
8534.4 a
2089.1 a
2144.2 a
10678.6 a
0.50 a
0.52 a
0.37 ab
0.45 a
0.51 a
习惯用氮 Conventional N
7682.7 ab
7837.6 a
1697.7 b
1916.1 ab
9753.7 a
0.49 a
0.52 ab
0.30 b
0.44 a
0.50 a
平均Mean
7627.0 a
7240.7 a
1913.7 a
1884.8 a
0.49 a
0.51 a
0.35 b
0.44 a
MM: maize monocropping; IM: maize intercropping; SS: soybean monocropping; IS: soybean intercropping. Values followed by different letters with a column are significantly different at 0.05 probability level. MM: 玉米单作; IM: 玉米套作; SS: 大豆单作; IS: 大豆套作; 同列中标以不同字母的值在0.05水平上差异显著。
表4 种植模式和施氮水平对玉米、大豆产量及经济系数的影响 Table 4 Effect of different N application rates and planting patterns on yield and economic coefficient of maize and soybean
表5 玉米-大豆套作体系的土地当量比(LER)、种间竞争力(Acs)及竞争比率(CRcs) Table 5 Land equivalent ratio, competition, and competition ratio of maize-soybean relay strip intercropping systems
施氮量 N application amount
2012
2013
LER
Acs
CRcs
LER
Acs
CRcs
不施氮 Zero N
1.965 b
-0.054 a
0.946 a
1.595 b
-0.037 a
0.955 a
减氮量 Reduced N
2.276 a
-0.367 b
0.722 b
2.051 ab
-0.002 a
0.998 a
习惯用氮 Conventional N
2.524 a
-0.720 c
0.556 c
2.149 a
-0.109 a
0.904 a
Values followed by different letters within a column are significantly different at 0.05 probability level. 同列中标以不同字母的值在0.05水平上差异显著。
表5 玉米-大豆套作体系的土地当量比(LER)、种间竞争力(Acs)及竞争比率(CRcs) Table 5 Land equivalent ratio, competition, and competition ratio of maize-soybean relay strip intercropping systems
4 结论花期后, 套作大豆的 Pn、 Gs、 Tr与单作差异不显著, 干物质积累量显著降低, R4~R6期的作物生长率和经济系数显著提高; 减量施氮提高了大豆的 Pn、 Gs、 Tr、干物质积累量和单株荚数。玉米-大豆套作减量一体化施肥促进了大豆花后光合特性的恢复和干物质的积累, 提高了大豆的经济系数及产量, 最终提高了系统总产。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
GuoJ H, LiuX J, ZhangY, ShenJ L, HanW X, ZhangW F, ChristieP, Goulding K W T, VitousekP W, ZhangF S. Significant acidification in major Chinese cropland s. , 2010, 327: 1008-1010[本文引用:1]
[2]
NgkeeKwong, BholahK F. Nitrogen and phosphorus transport by surface from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius. , 2002, 91: 147-157[本文引用:1][JCR: 2.859]
[3]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. , 2008, 45: 915-924ZhangF S, WangJ Q, ZhangW F, CuiZ L, MaW Q, ChenX P, JiangR F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. , 2008, 45: 915-924 (in Chinese with English abstract)[本文引用:1][CJCR: 1.979]
[4]
邹晓锦, 张鑫, 安景文. 氮肥减量后移对玉米产量和氮素吸收利用及农田氮素平衡的影响. , 2011, (6): 25-29ZouX J, ZhangX, AnJ W. Effect of reducing and postponing of N application on yield, plant N uptake, utilization and N balance in maize. , 2011, (6): 25-29 (in Chinese with English abstract)[本文引用:2]
[5]
战秀梅, 李亭亭, 韩晓日, 邹殿博, 左仁辉, 叶冰. 不同施肥方式对春玉米产量、效益及氮素吸收和利用的影响. , 2011, 17: 861-868ZhanX M, LiT T, HanX R, ZouD B, ZuoR H, YeB. Effects of nitrogen fertilization methods on yield, profit and nitrogen absorption and utilization of spring maize. , 2011, 17: 861-868 (in Chinese with English abstract)[本文引用:2][CJCR: 1.883]
[6]
ConstantinaJ, MaryaB, LaurentbF, AubrionbG, FontainebA, KerveillantcP, BeaudoinaN. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. , 2010, 135: 268-278[本文引用:2][JCR: 2.859]
[7]
RuanW B, RenT, ChenQ, ZhuX, WangJ G. Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production. , 2013, 66: 48-55[本文引用:2][JCR: 2.106]
[8]
杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆, 振兴大豆产业. , 2008, 27: 1-7YangW Y, YongT W, RenW J, FanG Q, MouJ Y, LuX L. Develop relay-planting soybean, revitalize soybean industry. , 2008, 27: 1-7 (in Chinese with English abstract)[本文引用:1]
[9]
雍太文, 杨文钰, 樊高琼, 王小春, 张亚飞. 麦/玉/豆”套作种植模式氮肥周年平衡施用初步研究. , 2009, (3): 31-35YongT W, YangW Y, FanG Q, WangX C, ZhangY F. Study on the annual balance application of nitrogen fertilizer in the relay-planting system of wheat-maize-soybean. , 2009, (3): 31-35 (in Chinese with English abstract)[本文引用:1]
[10]
雍太文, 杨文钰, 王小春, 樊高琼. 两种三熟套作体系中的氮素吸收利用及种间相互作用. , 2009, 27: 167-172YongT W, YangW Y, WangX C, FanG Q. Nitrogen uptake and utilization and interspecies reciprocityin the two relay-planting systems. , 2009, 27: 167-172 (in Chinese with English abstract)[本文引用:1][CJCR: 0.5]
[11]
雍太文, 杨文钰, 任万军, 樊高琼, 向达兵. 两种三熟套作体系中的氮素转移及吸收利用. , 2009, 42: 3170-3178YongT W, YangW Y, RenW J, FanG Q, XiangD B. Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. , 2009, 42: 3170-3178 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[12]
YangW T, LiZ X, WangJ W, WuP, ZhangY. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. , 2013, 146: 44-50[本文引用:4][JCR: 2.474]
[13]
MushagalusaG N, LedentJ F, DrayeX. Shoot and root competetion in potato-maize intercropping: effects on growth and yield. , 2008, 64: 180-188[本文引用:1][JCR: 2.578]
[14]
Makoi J H J R, Chimphango S B M, DakoraF D. Photosynthesis, water, use efficiency and tit 3C of five cowpea genotypes grown in mixed culture and at diferent densities with sorghum. , 2010, 48: 143-155[本文引用:1][JCR: 0.862]
[15]
王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性与产量的影响. , 2007, 33: 1502-1507WangZ, YangW Y, WuQ L. Effects of shading in maize/ soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. , 2007, 33: 1502-1507 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[16]
ZhangL, Van der Werf W, BastiaansL, ZhangS, LiB, Spiertz J H J. Light interception and utilization in relay intercrops of wheat and cotton. , 2008, 107: 29-42[本文引用:1][JCR: 2.474]
[17]
VosJ, Vand er-Putten P E L. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plantparts. , 2001, 14: 209-220[本文引用:1][JCR: 2.8]
[18]
宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵. 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应. , 2009, 31: 474-479SongY X, YangW Y, LiZ X, YuX B, GuoK, XiangD B. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping. , 2009, 31: 474-479 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[19]
谷秋荣, 薛晓娅, 郭鹏旭, 赵巧梅, 熊淑萍. 不同氮肥类型对大豆叶片光合特性及产量的影响. , 2010, 29: 900-905GuQ R, XueX Y, GuoP X, ZhaoQ M, XiongS P. Effects of different nitrogen forms on leaves photosynthesis characteristics and yields of soybean. , 2010, 29: 900-905 (in Chinese with English abstract)[本文引用:2]
[20]
谢甫绨, 马兆惠, 张惠君, 敖雪, 王海英. 氮肥对不同品质基因型大豆光合生理和干物质积累的影响. , 2010, 29: 223-227XieF T, MaZ H, ZhangH J, AoX, WangH Y. Effect of nitrogen fertilizer on photosynthetic physiology and dry matter accumulation of soybean with quality genotypes. , 2010, 29: 223-227 (in Chinese with English abstract)[本文引用:2]
[21]
雍太文, 董茜, 刘小明, 刘文钰, 宋春, 杨峰, 王小春, 杨文钰. 施肥方式对玉米-大豆套作体系氮素吸收利用效率的影响. , 2014, 36: 084-091YongT W, DongQ, LiuX M, LiuW Y, SongC, YangF, WangX C, YangW Y. Effect of N application methods on N uptake and utilization efficiency in maize-soybean relay strip intercropping system. , 2014, 36: 084-091 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[22]
王秋杰, 寇长林, 王永岐, 王兴仁, 张福锁. 砂地小麦套作花生的产量优势及其与养分利用效率关系的研究. , 1999, 25: 70-75WangQ J, KouC L, WangY Q, WangX R, ZhangF S. Studies on yield advantage of wheat and peanut relay intercropping system and its relation with nutrient utilization efficiency in sand y land . , 1999, 25: 70-75 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[23]
Haugaard-NielsenH, Ambus Pand Jensen E S. Interspecific competition, N use and interference with weeds in pe-barley intercropping. , 2001, 70: 101-109[本文引用:1][JCR: 2.474]
[24]
WilleyR W, Osiru D S O. Studies on mixtures of maize and bean (Phaseolus vulgaris) with particular reference to plant population. , 1972, 79: 517-529[本文引用:1][JCR: 2.041]
[25]
OljacaS, CvetkovicR, KovacevicD, VasicG, MomirovicN. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaeolus vulgaris) intercropping system. , 2000, 135: 261-270[本文引用:1][JCR: 2.041]
[26]
LiL, SunJ H, ZhangF S, LiX L, YangS C, RengelZ. wheat-maize or wheat-soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. , 2001, 71: 123-137[本文引用:1][JCR: 2.474]
[27]
SubediK D. Wheat intercropped with tore (Brassica campestris var. toria) and pea (Pisum sativum) in the subsistence farming system of the Nepalese hills. , 1997, 128: 283-289[本文引用:1][JCR: 2.041]
[28]
雍太文, 杨文钰, 向达兵, 陈小容, 万燕. 小麦/玉米/大豆套作的产量、氮营养表现及其种间竞争力的评定. , 2012, 21(1): 50-58YongT W, YangW Y, XiangD B, ChenX R, WanY. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. , 2012, 21(1): 50-58 (in Chinese with English abstract)[本文引用:1][CJCR: 1.664]
[29]
张正翼, 龚万灼, 杨文钰, 马琳. 套作模式下不同大豆品种(系)主要农艺性状与产量的关系. , 2007, 26: 680-686ZhangZ Y, GongW Z, YangW Y, MaL. Correlation between nagronomic characters and yield in relay-planting soybeans. , 2007, 26: 680-686 (in Chinese with English abstract)[本文引用:1]
[30]
万燕, 闫艳红, 杨文钰. 不同氮肥水平下叶面喷施烯效唑对套作大豆生长和氮代谢的影响. , 2012, 38: 185-196WanY, YanY H, YangW Y. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybean under different nitrogen levels. , 2012, 38: 185-196 (in Chinese with English abstract)[本文引用:1][CJCR: 0.717]