关键词:缓/控释肥; 干湿交替灌溉; 氮素吸收; 氮素利用率 Effects of Water Management and Slow/Controlled Release Nitrogen Fertilizer on Biomass and Nitrogen Accumulation, Translocation, and Distribution in Rice PENG Yu, SUN Yong-Jian, JIANG Ming-Jin, XU Hui, QIN Jian, YANG Zhi-Yuan, MA Jun* Rice Research Institute of Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture of China, Wenjiang 611130, China Fund: AbstractSlow/controlled release nitrogen (N) fertilizers provide gradual supply of nutrient for a relatively long period, resulting in improvement of fertilizer use efficiency and reduction of N leaching losses. Alternate wetting and drying (AWD) irrigation is a water saving technique widely adopted in irrigated rice (Oryza sativaL.) system. However, the influence of water management on the effect of slow/controlled release N fertilizers is not clear. In this study, field experiments were conducted in 2012 and 2013 rice growing seasons under split-plot design. The main plot treatments were controlled irrigation (W1), alternate wetting and drying irrigation (W2), and flooding irrigation (W3). The subplot treatments were total N fertilizer applied before transplanting (F1), N splitting (before transplanting : tillering : spiking) ratio of = 5:3:2 (F2), sulfur coated N fertilizer applied before transplanting (F3), and resin coated N fertilizer applied before transplanting (F4). The results showed significant interactions between water regime and slow/controlled release N fertilizers application on biomass, nitrogen accumulation, translocation and distribution and grain yield at main growth stages. Yield components had significantly positive correlations with N increment in panicle and N translocation and distribution at heading stage. Both slow/controlled release nitrogen fertilizers and AWD resulted in enhanced biomass, N accumulation in plant and grain yield, and their interaction was significant. The N apparent use efficiency was much improved when slow/controlled release N fertilizers were used, which was as high as 42%-53% in F3 and F4 treatments. Besides, the partial factor productivity of applied nitrogen, N agronomic efficiency, and yield of F3 and F4 were increased by 6%-23%, 26%-71%, and 8%-19% compared to those of F1 and F2, respectively. Response of rice yield to N fertilizer type and water regime was mainly through fertile panicle number and grain number per panicle. Under controlled irrigation, slow/controlled release N fertilizers had the advantages to increase N use efficiency, produce large panicle, and maintained adequate panicles. Under alternate wetting and drying irrigation, slow/controlled release N fertilizers improved N accumulation capacity and N distribution in rice plant, which resulted from slow release of N nutrient into soil during crop growth. Under flooding irrigation, slow/controlled release N fertilizers reduced ineffective tillering and N loss by leaching and penetration and increase fertile panicle rate. Under experimental condition, slow/controlled release N fertilizers in combination with alternate wetting and drying irrigation was the optimal treatment for high yield and high N use efficiency.
Keyword:Slow/controlled release nitrogen fertilizers; Alternate wetting and drying irrigation; Nitrogen accumulation; Nitrogen use efficiency Show Figures Show Figures
表1 不同水氮处理群体干物质积累的Logistic方程 Table 1 Logistic equation analysis for the biomass accumulation of different water and nitrogen managements
处理 Treatment
回归方程 Regression equation
R2
TBA (kg hm-2)
Vm (kg hm-2 d-1)
(kg hm-2 d-1)
t0 (d)
t1 (d)
t2 (d)
t3 (d)
W1F1
Y=17704.20/[1+e(4.03-0.044x)]
0.9884
15859.80
194.75
113.28
92
62
122
60
W1F2
Y=19249.53/[1+e(3.99-0.044x)]
0.9880
17265.60
211.74
123.33
91
61
121
60
W1F3
Y=21086.03/[1+e(3.90-0.041x)]
0.9873
18452.40
216.13
131.80
95
63
127
64
W1F4
Y=22138.68/[1+e(3.88-0.041x)]
0.9883
19235.40
226.92
137.40
95
63
127
64
W2F1
Y=18654.74/[1+e(3.89-0.042x)]
0.9885
16705.80
195.87
119.33
93
61
124
63
W2F2
Y=21212.96/[1+e(3.92-0.041x)]
0.9880
18452.40
217.43
131.80
96
63
128
65
W2F3
Y=23980.34/[1+e(3.87-0.039x)]
0.9887
20136.00
233.81
143.83
99
65
133
68
W2F4
Y=24310.96/[1+e(3.93-0.040x)]
0.9889
20703.60
243.11
147.88
98
65
131
66
W3F1
Y=19219.78/[1+e(3.72-0.040x)]
0.9833
16824.00
192.20
120.17
93
60
126
66
W3F2
Y=21465.92/[1+e(3.90-0.041x)]
0.9900
18789.60
220.03
134.21
95
63
127
64
W3F3
Y=22085.43/[1+e(3.93-0.042x)]
0.9908
19624.20
231.90
140.17
94
62
125
63
W3F4
Y=22603.36/[1+e(3.98-0.043x)]
0.9913
20338.80
242.99
145.28
93
62
123
61
CK1
Y=12440.01/[1+e(4.38-0.049x)]
0.9882
11343.60
152.40
81.03
89
63
116
53
CK2
Y=14592.24/[1+e(4.17-0.047x)]
0.9826
13167.00
171.46
94.05
89
61
117
56
CK3
Y=13929.00/[1+e(4.13-0.048x)]
0.9855
12927.60
167.15
92.34
86
59
113
54
W1: 控灌; W2: 干湿交替灌溉; W3: 淹水灌溉; F1: 尿素全部底施; F2: 尿素基肥:分蘖肥:穗肥=5:3:2; F3: 硫包膜缓释肥全部底施; F4: 树脂包膜控释肥全部底施; CK1: 控灌不施肥; CK2: 干湿交替不施肥; CK3: 淹水灌溉不施肥; TBA: 成熟期总干物质量(kg hm-2); Vm: 干物质积累最大增长速率(kg hm-2 d-1);: 干物质积累平均增长速率(kg hm-2 d-1); t0: 干物质积累最大增长率出现的时间; t1: 干物质积累加速增长出现的时间; t2: 干物质积累减速增长出现的时间; t3: 快速增长持续天数。 W1: controlled irrigation; W2: alternate wetting and drying irrigation; W3: flooding irrigation; F1: urea single basal application; F2: urea applying ratio was base : tillering : spiking = 5:3:2; F3: sulfur coated N fertilizer single basal application; F4: resin coated N fertilizer single basal application. CK1: no N fertilization and controlled irrigation; CK2: no N fertilization and alternate wetting and drying irrigation; CK3: no N fertilization and flooding irrigation; TBA: total biomass accumulation at maturity stage (kg hm-2); Vm: the maximum increasing rate of biomass accumulation (kg hm-2 d-1);: average increasing rate of biomass accumulation (kg hm-2 d-1); t0: days to the maximum increasing rate; t1: the beginning time for biomass accumulation rate increased rapidly; t2: the beginning time for biomass accumulation rate decreased; t3: duration of biomass accumulated rapidly.
表1 不同水氮处理群体干物质积累的Logistic方程 Table 1 Logistic equation analysis for the biomass accumulation of different water and nitrogen managements
表2 不同水氮管理水稻群体各生育期器官氮积累 Table 2 Nitrogen accumulation of rice population in organs at main growth stages under different water and nitrogen managements (kg hm-2)
处理 Treatment
叶Leaf
茎鞘Stem and sheath
穗Panicle
植株Plant
拔节期 JS
齐穗期 FHS
成熟期 MS
拔节期 JS
齐穗期 FHS
成熟期 MS
齐穗期 FHS
成熟期 MS
拔节期 JS
齐穗期 FHS
成熟期 MS
W1F1
61.80 d
67.50 d
25.91 d
22.57 c
31.08 d
17.40 d
20.70 d
84.32 d
84.36 c
119.28 d
127.63 d
W1F2
63.94 c
83.36 c
32.93 c
18.95 d
35.33 c
20.21 c
23.95 c
93.96 c
82.89 d
142.64 c
147.11 c
W1F3
75.36 b
89.62 b
37.04 b
28.67 b
39.36 b
22.42 b
25.41 b
101.06 b
104.03 b
154.39 b
160.53 b
W1F4
79.26 a
95.67 a
40.15 a
33.31 a
48.43 a
26.57 a
26.10 a
107.45 a
112.57 a
170.21 a
174.17 a
W2F1
70.14 c
73.76 d
28.24 c
23.17 c
32.97 d
19.04 d
22.79 d
86.93 d
93.31 c
129.52 d
134.21 d
W2F2
70.94 c
85.15 c
36.91 b
20.38 d
38.38 c
21.30 c
25.58 c
102.42 c
91.31 d
149.12 c
160.63 c
W2F3
77.91 b
97.30 b
41.71 a
30.23 b
44.34 c
24.26 b
29.68 b
114.26 b
108.14 b
171.32 b
180.23 b
W2F4
83.40 a
105.70 a
43.32 a
36.92 a
51.99 a
28.70 a
34.17 a
123.60 a
120.31 a
191.87 a
195.62 a
W3F1
73.85 c
66.18 d
28.30 d
25.43 c
32.57 c
18.08 d
22.34 d
86.96 c
99.28 c
121.08 d
133.33 d
W3F2
68.89 d
85.94 c
36.36 c
20.74 d
40.80 b
21.36 c
26.02 c
107.14 b
89.63 d
152.77 c
164.86 c
W3F3
78.51 b
96.99 b
39.32 b
30.19 b
42.46 b
24.27 b
29.18 b
108.64 b
108.71 b
168.64 b
172.24 b
W3F4
82.58 a
103.42 a
41.82 a
34.56 a
49.08 a
30.49 a
31.99 a
115.72 a
117.14 a
184.49 a
188.03 a
平均 Average
W1
70.09 a
84.04 c
34.01 c
25.87 b
38.55 b
21.65 b
24.04 c
96.70 b
95.97 b
146.63 c
152.36 b
W2
75.60 a
90.48 a
37.55 a
27.67 a
41.92 a
23.32 a
28.05 a
106.81 a
103.27 a
160.46 a
167.67 a
W3
75.96 a
88.13 b
36.45 b
27.73 a
41.23 a
23.55 a
27.36 b
104.62 a
103.69 a
156.75 b
164.62 a
F值 F-value
W
25.82**
24.49**
10.72**
30.77**
26.57**
20.98**
96.76**
36.52**
38.84**
53.45**
34.68**
F
33.23**
95.22**
29.59**
69.51**
41.77**
48.24**
280.16**
24.56**
86.94**
171.50**
52.42**
W×F
12.73**
11.85**
1.12
5.14**
4.45**
1.88
147.24**
7.52**
12.22**
16.81**
5.83**
W1~W3和F1~F4说明同表1。W: 水分管理; F: 氮肥管理。在每个数据区内,同列数据后不同小写字母表示处理间有显著差异( P<0.05)。*和**分别表示 F值达显著( P<0.05)和极显著( P<0.01)水平。 Introduction of treatments W1 to W3 and F1 to F4 are the same to that in Table 1. W: Water management; F: Nitrogen management. JS: jointing stage; FHS: full heading stage; MS: maturity stage. In each data area, different letters within the same column indicate significant difference among treatments ( P< 0.05).* and** represent a significant F-value at P < 0.05 and P < 0.01, respectively.
表2 不同水氮管理水稻群体各生育期器官氮积累 Table 2 Nitrogen accumulation of rice population in organs at main growth stages under different water and nitrogen managements (kg hm-2)
表3 不同水氮管理对氮素运转的影响 Table 3 Nitrogen translocation in organs from full heading stage to maturity stage under different water and nitrogen managements
处理 Treatment
氮运转量NT (kg hm-2)
氮运转率NTE (%)
氮贡献率NTCR (%)
穗氮增加量 N increment in panicle (kg hm-2)
叶Leaf
茎Stem
叶Leaf
茎Stem
叶Leaf
茎Stem
W1F1
41.59 d
13.69 d
61.62 a
44.05 a
49.34 b
16.23 b
63.62 d
W1F2
50.42 c
15.12 c
60.49 a
42.79 a
53.67 a
16.09 b
70.01 c
W1F3
52.58 b
16.93 b
58.67 b
43.03 a
52.07 a
16.76 b
75.65 b
W1F4
55.52 a
21.87 a
58.03 b
45.07 a
51.71 a
20.38 a
81.35 a
W2F1
45.52 d
13.93 d
61.69 a
42.24 b
52.39 a
16.04 b
64.15 d
W2F2
48.25 c
17.08 c
56.65 c
44.53 ab
47.10 c
16.68 b
76.84 c
W2F3
55.59 b
20.08 b
57.13 bc
45.29 a
48.70 bc
17.60 ab
84.59 b
W2F4
62.38 a
23.29 a
59.01 b
44.76 a
50.48 ab
18.85 a
89.43 a
W3F1
37.88 d
14.49 b
57.23 b
44.43 ab
43.59 b
16.66 ab
64.62 c
W3F2
49.58 c
19.44 a
57.66 ab
47.64 a
46.26 b
18.15 a
81.12 ab
W3F3
57.67 b
18.19 a
59.46 a
42.85 b
53.14 a
16.75 ab
79.46 b
W3F4
61.60 a
18.59 a
59.57 a
37.89 c
53.26 a
16.07 b
83.73 a
平均 Average
W1
50.03 c
16.90 a
59.70 a
43.73 a
51.70 a
17.37 a
72.66 b
W2
52.94 a
18.60 a
58.62 b
44.20 a
49.67 ab
17.29 a
78.75 a
W3
51.68 b
17.68 a
58.48 b
43.20 a
49.06 b
16.91 a
77.23 a
F值 F-value
W
240.78**
3.82
37.67**
0.53
6.91
0.32
11.24*
F
164.61**
61.01**
3.20*
1.72
5.15**
4.78*
122.59**
W×F
8.3**
7.82**
5.03**
4.85**
7.45**
3.98*
5.02**
W1~W3和F1~F4说明同表1。W: 水分管理; F: 氮肥管理。在每个数据区内,同列数据后不同小写字母表示处理间有显著差异( P<0.05)。*和**分别表示 F值达显著( P<0.05)和极显著( P<0.01)水平。 Introduction of treatments W1 to W3 and F1 to F4 are the same to that in Table 1. NT: N translocation; NTE: N translocation efficiency; NTCR: N translocation conversion rate. In each data area, different letters within the same column indicate significant difference among treatments ( P<0.05).* and** represent a significant F-value at P<0.05 and P<0.01, respectively.
表3 不同水氮管理对氮素运转的影响 Table 3 Nitrogen translocation in organs from full heading stage to maturity stage under different water and nitrogen managements
图2 成熟期各器官氮素分配W1~W3和F1~F4说明同图1。Fig. 2 Proportion of nitrogen accumulation in leaves, stems, and grains at maturity stageIntroduction of treatments W1 to W3 and F1 to F4 are the same to that in Fig 1.
表4 不同水氮管理对氮效率的影响 Table 4 Effects of different water and nitrogen management on nitrogen use efficiency
处理 Treatment
氮收获指数 NHI (%)
氮干物质生产效率 NBPE (kg kg-1)
氮稻谷生产效率 NGPE (kg kg-1)
氮肥偏生产力 NPP (kg kg-1)
氮农学利用率 NAE (kg kg-1)
氮表观利用率 NAUE (%)
W1F1
66.07 a
120.61 a
71.35 a
50.59 d
16.20 c
26.99 d
W1F2
63.87 b
114.02 b
67.24 b
54.95 c
18.46 b
37.81 c
W1F3
62.96 c
111.68 c
65.31 c
58.24 b
23.32 a
45.26 b
W1F4
61.69 d
107.33 d
62.98 d
60.94 a
23.90 a
52.84 a
W2F1
64.77 a
120.61 a
70.52 a
52.58 d
13.34 c
19.33 d
W2F2
63.76 ab
111.41 b
66.49 b
59.34 c
19.63 b
34.00 c
W2F3
63.40 b
107.99 c
64.87 c
64.96 b
24.07 a
44.89 b
W2F4
63.18 b
101.99 d
61.56 d
66.91 a
25.67 a
53.45 a
W3F1
65.22 a
121.97 a
70.84 a
52.47 c
14.95 d
20.76 d
W3F2
64.99 a
110.53 b
65.95 b
60.40 b
17.66 c
38.27 c
W3F3
63.08 b
109.87 b
64.64 c
61.86 ab
23.25 b
42.37 b
W3F4
61.54 c
104.14 c
60.97 d
63.69 a
26.58 a
51.14 a
平均 Average
W1
63.65 a
113.41 a
66.72 a
56.18 b
20.47 a
40.73 a
W2
63.78 a
110.50 b
65.86 a
60.95 a
20.68 a
37.92 b
W3
63.71 a
111.63 ab
65.60 a
59.61 a
20.61 a
38.14 b
F值 F-value
W
0.06
7.41*
2.52
39.11**
0.13
10.17*
F
41.38**
87.35**
75.59**
89.37**
82.07**
98.13**
W×F
4.21**
6.38**
0.81
4.40**
2.01
5.82**
W1~W3和F1~F4说明同表1。W: 水分管理; F: 氮肥管理。在每个数据区内,同列数据后不同小写字母表示处理间有显著差异( P<0.05)。*和**分别表示 F值达显著( P<0.05)和极显著( P<0.01)水平。 Introduction of treatments W1 to W3 and F1 to F4 are the same to that in Table 1. W: Water management; F: Nitrogen management. NHI: N harvest index; NBPE: N use efficiency for biomass production; NGPE: N use efficiency for grain production; NPP: partial factor productivity of applied nitrogen; NAE: N agronomic efficiency; NAUE: N apparent use efficiency. In each data area, different letters within the same column indicate significant difference among treatments ( P<0.05).* and** represent a significant F-value at P<0.05 and P<0.01, respectively.
表4 不同水氮管理对氮效率的影响 Table 4 Effects of different water and nitrogen management on nitrogen use efficiency
表5 不同水氮管理对产量及其构成因素的影响 Table 5 Yield and its components under different water managements and nitrogen fertilizer types
处理 Treatment
最高分蘖 Max tiller No. (×104 hm-2)
有效穗 Fertile tiller No. (×104hm-2)
穗粒数 Spikeletes per panicle
千粒重 1000-grain weight (g)
结实率 Seed-setting rate (%)
2012年产量 Grain yield (t hm-2)
2013年产量 Grain yield (t hm-2)
W1F1
424.40 c
230.10 d
151.00 c
28.90 a
88.00 ab
8.05 d
8.48 d
W1F2
426.60 b
237.00 c
154.33 b
29.29 a
86.33 b
8.21 c
8.97 c
W1F3
441.00 a
240.90 b
158.00 a
29.47 a
89.00 a
8.68 b
9.56 b
W1F4
436.80 a
244.50 a
160.00 a
29.39 a
90.33 a
8.89 a
9.80 a
W2F1
429.40 b
237.60 d
150.33 b
29.25 b
88.33 b
8.64 c
8.91 d
W2F2
427.80 b
241.80 c
159.33 a
29.69 ab
90.67 a
8.82 b
9.35 c
W2F3
453.00 a
252.60 b
161.00 a
30.21 ab
91.00 a
9.00 ab
10.25 b
W2F4
456.00 a
256.50 a
162.00 a
30.46 a
90.67 a
9.20 a
11.00 a
W3F1
433.80 b
238.50 d
144.67 c
29.28 a
90.33 a
8.18 c
8.73 d
W3F2
436.20 b
242.40 c
156.00 b
29.13 a
87.33 b
8.51 b
9.23 c
W3F3
448.00 a
246.30 b
163.67 a
29.31 a
90.00 a
8.85 a
9.85 b
W3F4
459.00 a
253.80 a
164.67 a
29.98 a
89.67 a
9.02 a
10.20 a
平均 Average
W1
432.20 b
238.13 b
155.83 b
29.26 b
88.42 c
8.46 b
9.20 c
W2
441.55 a
247.13 a
158.17 a
29.90 a
90.17 a
8.92 a
9.88 a
W3
444.25 a
245.25 a
157.25 ab
29.42 ab
89.33 b
8.64 ab
9.50 b
F值 F-value
W
31.38**
32.90**
4.85
6.90*
33.10**
27.39**
26.07**
F
42.98**
141.27**
33.57**
2.09
2.45
72.05**
257.62**
W×F
1.95
4.31**
2.66*
0.39
1.21
4.58**
6.50**
W1~W3和F1~F4说明同表1。W: 水分管理; F: 氮肥管理。在每个数据区内,同列数据后不同小写字母表示处理间有显著差异( P<0.05)。*和**分别表示 F值达显著( P<0.05)和极显著( P<0.01)水平。 Introduction of treatments W1 to W3 and F1 to F4 are the same to that in Table 1. W: Water management; F: Nitrogen management. JS: jointing stage; FHS: full heading stage; MS: maturity stage. In each data area, different letters within the same column indicate significant difference among treatments ( P<0.05).* and** represent a significant F-value at P<0.05 and P<0.01, respectively.
表5 不同水氮管理对产量及其构成因素的影响 Table 5 Yield and its components under different water managements and nitrogen fertilizer types
表6 干物质、氮素吸收、运转和分配与产量的相关系数 Table 6 Correlation coefficients of nitrogen accumulation, translocation, distribution, and nitrogen use efficiency with yield and its components
指标 Index
干物质量 Biomass
有效穗 Panicle No.
穗粒数 Spikeletes per panicle
结实率 Seed-setting rate
千粒重 1000-grain weight
产量 Grain yield
氮素积累 Nitrogen accumulation
拔节期JS
0.817**
0.837**
0.611**
0.464**
0.466**
0.816**
齐穗期FHS
0.964**
0.909**
0.847**
0.280
0.496**
0.908**
成熟期MS
0.988**
0.913**
0.843**
0.300
0.524**
0.919**
氮素运转量 Nitrogen translocation
叶Leaf
0.884**
0.822**
0.848**
0.224
0.435**
0.848**
茎Stem
0.830**
0.783**
0.644**
0.152
0.389*
0.708**
氮素分配 Nitrogen distribution
叶Leaf
0.590**
0.469**
0.547**
0.243
0.306
0.543**
茎Stem
0.364*
0.405*
0.386*
0.086
0.115
0.376*
穗Panicle
-0.715**
-0.684**
-0.674**
-0.290
-0.337*
-0.706**
氮收获指数NHI
-0.685**
-0.639**
-0.661**
-0.252
-0.310
-0.667**
氮干物质生产效率NBPE
-0.934**
-0.845**
-0.851**
-0.243
-0.469**
-0.871**
氮稻谷生产效率NGPE
-0.904**
-0.830**
-0.835**
-0.251
-0.415*
-0.844**
氮偏生产力NPP
0.989**
0.902**
0.813**
0.308
0.550**
0.910**
氮农学利用率NAE
0.860**
0.795**
0.794**
0.465**
0.555**
0.908**
氮表观利用率NUE
0.866**
0.732**
0.816**
0.168
0.411*
0.779**
*和**分别表示0.05和0.01水平上显著。 JS: jointing stage; FHS: full heading stage; MS: maturity stage. NHI: N harvest index; NBPE: N use efficiency for biomass production; NGPE: N use efficiency for grain production; NPP: partial factor productivity of applied nitrogen; NAE: N agronomic efficiency; NUE: N use efficiency.* and** represent significant correlation at the 0.05 and 0.01 probability levels respectively.
表6 干物质、氮素吸收、运转和分配与产量的相关系数 Table 6 Correlation coefficients of nitrogen accumulation, translocation, distribution, and nitrogen use efficiency with yield and its components
4 结论水稻氮素吸收、运转、分配及其氮效率受水分管理方式和氮肥种类及其互作的影响。不同水分条件下, 缓/控释肥均能提高水稻产量, 但增产机制不同。控灌条件下, 缓/控释肥处理氮素有效性高, 保证足穗、促进重穗; 淹水灌溉条件下, 缓/控释肥处理使无效分蘖减少, 氮素入渗、淋溶降低, 成穗率提高。干湿交替灌溉条件下, 不仅能保持氮素的高效释放而且能与水分协调作用, 有助于高产群体的构建, 从而提高稻株的氮素积累和协调氮素分配, 加速氮素向穗部的运转。干湿交替灌溉条件下, 施用缓/控释肥, 能有效提高氮素利用率, 提高水稻干物质量及增产潜力。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
朱兆良, 金继运. 保障我国粮食安全的肥料问题. , 2013, 19: 259-273ZhuZ L, JinJ Y. Fertilizer use and food security in China. , 2013, 19: 259-273 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[2]
任万军, 伍菊仙, 卢庭启, 吴锦绣, 杨文钰, 彭虎. 氮肥运筹对免耕高留茬抛秧稻干物质积累、运转和分配的影响. , 2009, 27: 162-166RenW J, WuJ X, LuT Q, WuJ X, YangW Y, PengH. Effects of nitrogen strategies on dry matter accumulation, transformation and distribution of broadcasted rice among high stand ing-stubbles under no-tillage condition. , 2009, 29: 162-166 (in Chinese with English abstract)[本文引用:1][CJCR: 0.5]
[3]
陈建生, 徐培智, 唐栓虎, 张发宝, 谢春生. 一次基施水稻控释肥技术的养分利用率及增产效果. , 2005, 16: 1868-1871ChenJ S, XuP Z, TangS H, ZhangF B, XieC S. Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer. , 2005, 16: 1868-1871 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[4]
樊小林, 刘芳, 廖照源, 郑祥洲, 喻建刚. 我国控释肥料研究的现状和展望. , 2009, 15: 463-473FanX L, LiuF, LiaoZ Y, ZhengX Z, YuJ G. The status and outlook for the study of controlled-release fertilizers in China. , 2009, 15: 463-473 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[5]
樊小林, 梁新松, 周少川. 丰华占和粤香占对水肥互作的产量效应. , 2005, 33(11): 1-8FanX L, LiangX S, ZhouS C. Yield response of Fenghuazhan and Yuexiangzhan to water management and fertilizer as well as their interaction. ), 2005, 33(11): 1-8 (in Chinese with English abstract)[本文引用:1]
[6]
郑圣先, 聂军, 熊金英, 肖剑, 罗尊长, 易国英. 控释肥料提高氮素利用率的作用及对水稻效应的研究. , 2001, 7: 11-16ZhengS X, NieJ, XiongJ Y, XiaoJ, LuoZ C, YiG Y. Study on role of controlled release fertilizer in increasing the efficiency of nitrogen utilization and rice yield. , 2001, 7: 11-16 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[7]
李旭毅, 孙永健, 程宏彪, 郑洪帧, 杨志远, 贾现文, 刘树金, 胡蓉, 马均. 氮肥运筹和栽培方式对杂交籼稻II优498结实期群体光合特性的影响. , 2011, 37: 1650-1659LiX Y, SunY J, ChengH B, ZhengH Z, YangZ Y, JiaX W, LiuS J, HuR, MaJ. Effects of nitrogen application strategy and cultivation model on the performances of canopy apparent photosynthesis of indica hybrid rice Eryou 498 during filling stage. , 2011, 37: 1650-1659 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[8]
王允青, 郭熙盛, 戴明伏. 氮肥运筹方式对杂交水稻干物质积累和产量的影响. , 2008, (2): 31-34WangY Q, GuoX S, DaiM F. Effects of nitrogen application on dry matter accumulation and yield of hybrid rice. , 2008, (2): 31-34 (in Chinese with English abstract)[本文引用:1]
[9]
刘立军, 薛亚光, 孙小淋, 王志琴, 杨建昌. 水分管理方式对水稻产量和氮肥利用率的影响. , 2009, 23: 282-288LiuL J, XueY G, SunX L, WangZ Q, YangJ C. Effects of water management methods on grain yield and fertilizer nitrogen use efficiency in rice. , 2009, 23: 282-288 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[10]
张自常, 徐云姬, 褚光, 王志琴, 王学明, 刘立军, 杨建昌. 不同灌溉方式下的水稻群体质量. , 2011, 37: 2011-2019ZhangZ C, XuY J, ChuG, WangZ Q, WangX M, LiuL J, YangJ C. Population quality of rice under different irrigation regimes. , 2011, 37: 2011-2019 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[11]
朱齐超, 朱金龙, 危常州, 宁小雄, 李美宁, 赵红华, 张书捷. 不同施氮水平对膜下滴灌水稻干物质积累和养分吸收规律的影响. , 2013, 50: 433-439ZhuQ C, ZhuJ L, WeiC Z, NingX X, LiM N, ZhaoH H, ZhangS J. Effects of nitrogen rates on dry matter accumulation and nutrient absorption of rice under film mulch with drip irrigation. , 2013, 50: 433-439 (in Chinese with English abstract)[本文引用:1][CJCR: 0.778]
[12]
孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾现文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. , 2011, 37: 2221-2232SunY J, SunY Y, LiuS J, YangZ Y, ChengH B, JiaX W, MaJ. Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice. , 2011, 37: 2221-2232 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[13]
张自常, 李鸿伟, 曹转勤, 王志琴, 杨建昌. 施氮量和灌溉方式的交互作用对水稻产量和品质影响. , 2013, 39: 84-92ZhangZ C, LiH W, CaoZ Q, WangZ Q, YangJ C. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice. , 2013, 39: 84-92 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[14]
程旺大, 张国平, 赵国平, 姚海根, 王润屹. 嘉早935水稻覆膜旱栽的物质积累及运转研究. , 2003, 29: 413-418ChengW D, ZhangG P, ZhaoG P, YaoH G, WangR Y. Differences in accumulation and translocation of the nutrients and dry matter between dry and paddy cultures of rice cultivar Jiazao 935. , 2003, 29: 413-418 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[15]
张小翠, 戴其根, 胡星星, 朱德建, 丁秀文, 马克强, 张洪程, 朱聪聪. 不同质地土壤下缓释尿素与常规尿素配施对水稻产量及其生长发育的影响. , 2012, 38: 1494-1503ZhangX C, DaiQ G, HuX X, ZhuD J, DingX W, MaK Q, ZhangH C, ZhuC C. Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures. , 2012, 38: 1494-1503 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[16]
谢春生, 唐拴虎, 徐培智, 张发宝, 陈建生. 一次性施用控释肥对水稻植株生长及产量的影响. , 2006, 12: 2177-2182XieC S, TangS H, XuP Z, ZhangF B, ChenJ S. Effects of single basal application of controlled-release fertilizers on growth and yield of rice. , 2006, 12: 2177-2182 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[17]
范雪梅, 戴廷波, 姜东, 荆奇, 曹卫星. 花后干旱与渍水下氮素供应对小麦碳氮运转的影响. , 2004, 18(6): 63-67FanX M, DaiT B, JiangD, JingQ, CaoW X. Effects of nitrogen rates on carbon and nitrogen assimilate translocation in wheat grown under drought and water logging from anthesis to maturity. , 2004, 18(6): 63-67 (in Chinese with English abstract)[本文引用:1][JCR: 1.265]
[18]
霍中洋, 杨雄, 张洪程, 葛梦婕, 马群, 李敏, 戴其根, 许轲, 魏海燕. 不同氮肥群体最高生产力水稻品种各器官的干物质和氮素的积累与转运. , 2012, 18: 1035-1045HuoZ Y, YangX, ZhangH C, GeM J, MaQ, LiM, DaiQ G, XuK, WeiH Y. Accumulation and translocation of dry matter and nitrogen nutrition in organs of rice cultivars with different productivity levels. , 2012, 18: 1035-1045 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[19]
彭玉, 马均, 蒋明金, 严奉君, 孙永健, 杨志远. 缓/控释肥对杂交水稻根系形态生理特性和产量的影响. , 2013, 19: 1048-1057PengY, MaJ, JiangM J, YanF J, SunY J, YangZ Y. Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice. , 2013, 19: 1048-1057 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[20]
DeVarennes A, De Melo-AbreuJ P, FerreiraM E. Predicting the concentration and uptake of nitrogen, phosphorus and potassium by field-grown green beans under non-limiting conditions. , 2002, 17: 63-72[本文引用:1][JCR: 2.8]
[21]
BarrosR, IsidoroD, AragüésR. Irrigation management, nitrogen fertilization and nitrogen losses in the return flows of La Violada irrigation district (Spain). Agric, 2012, 155: 161-171[本文引用:1][JCR: 2.859]
[22]
YeY S, LiangX Q, ChenY X, LiuJ, GuJ T, GuoR, LiL. Alternate wetting and drying irrigation and controlled-release nitrogen ferti-lizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. , 2013, 144: 212-224[本文引用:1][JCR: 2.474]
[23]
PatilM D, BhabaniS D, BarakE, BhadoriaP B S, PolakA. Performance of polymer-coated urea in transplanted rice: effect of mixing ratio and water input on nitrogen use efficiency. , 2010, 8: 189-198[本文引用:1][JCR: 1.025]