删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四川盆地单产9000 kg hm-2以上超高产小麦品种产量结构与干物质积累特点

本站小编 Free考研考试/2021-12-26

汤永禄1,*, 李朝苏1, 吴春1, 吴晓丽1, 黄钢1, 何刚2
1 四川省农业科学院作物研究所, 四川成都 610066

2 四川省江油市农业局, 四川江油 621700

* 通讯作者(Corresponding author): 汤永禄, E-mail:ttyycc88@163.com
第一作者联系方式: E-mail:liqingchao-2@163.com
收稿日期:2013-08-16 基金:本研究中所用品种的1B·1R易位系和矮秆基因检测得到了四川省农业科学院作物研究所杨武云实验室的支持和帮助, 英文摘要得到了CIMMYT小麦育种家Rosewarne Garry博士的斧正, 在此一并致以最诚挚的谢意。

摘要选择3个典型超高产品种和7个一般高产品种(对照)在4个环境(年份×地点)下考察其产量、产量构成因素和干物质积累、转运特点, 以揭示四川盆地高温、高湿、弱光照生态条件下超高产小麦品种的产量形成特性, 为超高产育种和生产提供依据。超高产品种在4个环境下的平均产量达9338 kg hm-2, 比对照品种高24.2%; 其穗数(449×104 hm-2)、穗粒数(42.3)、粒数(18 825 m-2)、千粒重(47.8 g)分别比对照高8.2%、10.7%、18.3%和0.6%。超高产品种在各个生育阶段的干物质积累速率、干物质积累量都高于对照品种, 尤其是生育前期, 如在分蘖盛期和拔节期干物质积累量分别高11.1%和18.2%; 同时, 其干物质转运量、转运效率和对籽粒的贡献率也高于对照品种, 成熟时非籽粒器官干物质所占比重较对照品种低1.2~3.5个百分点。小麦籽粒产量与各个生育阶段的群体干重和分蘖、拔节期的个体干重呈极显著正相关, 超高产品种具有分蘖力强, 前期生长旺盛、干物质积累多, 后期分配到籽粒的干物质比例较高等特点, 这是高产的生理基础。

关键词:四川盆地; 超高产小麦; 产量结构; 干物质积累和转运
Yield Component and Dry Matter Accumulation in Wheat Varieties with 9000 kg ha-1 Yield Potential in Sichuan Basin
TANG Yong-Lu1,*, LI Chao-Su1, WU Chun1, WU Xiao-Li1, HUANG Gang1, HE Gang2
1 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China

2 Bureau of Agriculture of Jiangyou City, Sichuan Province, Jiangyou 621700, China


AbstractThe objective of this study was to explore yield-forming characteristics of super-high-yield (SHY) wheat varieties that grow under high temperature, high humidity, and weak sunshine condition in Sichuan Basin, China. In four year × location environments, we tested the grain yield and its components of three SHY varieties and seven common high-yield varieties (control), as well as the characteristics of dry matter accumulation and translocation. The average yield of SHY varieties over environments reached 9338 kg ha-1, which was 24.2% higher than those of the controls. SHY varieties had average spike number of 449×104 ha-1, grain number per spike of 42.3, grain number of 18 825 m-2, and thousand-grain weight of 47.8 g, which were 8.2%, 10.7%, 18.3%, and 0.6% higher than those of the control. At various growth stages, SHY varieties had significantly higher rates and larger amounts of dry matter accumulation, especially at the early growing period. For example, the amount of dry matter accumulation in the SHY varieties was 11.1% and 18.2% higher than those of the controls at tillering and jointing stages, respectively. Moreover, compared with the control, SHY varieties had significantly higher amount of dry matter translocation, translocation efficiency, and contribution of remobilization to grain. At maturity, the proportion of dry matter in vegetative organs was 1.2%-3.5% lower in SHY variety than in the controls. There were significant correlations between grain yield and colony dry matter at various growth stages and individual dry matter at tillering and jointing stages. SHY varieties tested in this study possess strong tillering ability, early vigorous growth, and high levels of dry matter accumulation and translocation into grains, which ultimately result in the high grain yield.

Keyword:Sichuan Basin; Super-high-yield wheat; Yield component; Dry matter accumulation and translocation
Show Figures
Show Figures






随着人口的持续增长和可耕地的日益减少, 不断提高单产乃是保障粮食总量增长的必由之路[ 1, 2]。我国从20世纪90年代开始全面开展小麦超高产(≥9000 kg hm-2)研究, 经过20年, 各大麦区都取得了实质性突破, 先后育成大批超高产品种, 并在大田试验中达到预期高产目标, 最高产量达11 848 kg hm-2 [ 3, 4, 5, 6, 7, 8]。从高产到超高产的跨越, 是遗传改良、栽培管理、土壤培肥等多技术协同进步、多因子协同作用的结果。多数研究表明, 在北方小麦主产区, 多穗型、中间型和大穗型品种都能实现超高产, 虽技术路径有所不同, 但共同之处在于都显著提高了单位面积穗数[ 7, 8, 9, 10]。超高产品种具有叶片窄小、直立、耐肥抗倒[ 11, 12], 以及群体大、干物质积累多, 前期稳健、后期个体质量高等特点[ 13, 14]
小麦超高产研究尽管成效显著, 但已有超高产典型仍局限在小面积甚至个别地块上, 大面积生产尚未上升到9000 kg hm-2以上的超高产水平; 而且因生态环境、品种、栽培技术等诸多原因, 使区域间发展极不平衡。四川盆地小麦单产水平在全国偏低, 研究也相对滞后, 直至21世纪初小麦高产育种和栽培才有所突破[ 14, 15], 但对超高产品种特性和栽培技术研究仍不够深入。本研究旨在利用近年最新育种成果, 选用产量潜力在9000 kg hm-2以上的3个超高产品种和7个代表性的一般高产品种, 通过两年两点的比较, 揭示四川盆地弱光照生态区超高产小麦品种的特性, 为超高产育种和生产提供指导。
1 材料与方法1.1 试验设计2010—2011和2011—2012年连续2个小麦生长季, 选择10个四川省代表性品种(表1)在四川广汉(30.99° N, 104.25° E, 海拔500 m)和江油(31.42° N, 104.48° E, 海拔650 m)进行田间试验。超高产(SHY)和一般品种(对照)的划分根据前期试验和超高产攻关验收结果, 单产≥9000 kg hm-2的品种视为SHY品种。
表1
Table 1
表1(Table 1)
表1 参试小麦品种的基本信息 Table 1 Information of wheat varieties tested in this study
品种类型 Type of variety品种1) Variety1)审定年份 Released year系谱 Pedigree矮秆基因 Dwarfing gene1B∙1R2)株型3) Plant type3)
超高产 Super high yield川麦42 Chuanmai 422004SynCD768/SW3243//川6415 Rht1, Rht4?-C
绵麦367 Mianmai 36720101275-1/99-1522 Rht1-C
川麦104 Chuanmai 1042012川麦42/川农16 Rht1, Rht4?, Rht9?-C
一般高产(对照) Common high yield (CK)川麦51 Chuanmai 512008174/183//99-1572 Rht8-L
川麦55 Chuanmai 552009SW3243/SW8688 Rht2, Rht9?+L
川麦56 Chuanmai 562009川麦30/川麦42 Rht1, Rht9?-L
内麦836 Neimai 83620085680/92R133 Rht2, Rht8-C
绵麦37 Mianmai 37200496EW37/绵阳90-100 Rht2, Rht8, Rht5?-L
川育23 Chuanyu 232008R59//郑9023/H435 Rht2, Rht8, Rht9?-L
西科麦5 Xikemai 52008贵农21/96II-39 Rht2, Rht5?+L
1) 国审品种用粗体表示, 其他品种为四川省审定。2) +和-分别表示1B∙1R易位系和非1B∙1R系, 由四川省农业科学院作物研究所杨武云博士实验室检测。3) C和L分别表示紧凑和松散型。
1) Varieties in bold are nationally registered and other varieties are registered in Sichuan province.2) + and - indicate 1B∙1R and non 1B∙1R line, respectively, which were verified in the laboratory of Dr. Yang Wu-Yun from Crop Research Institute of Sichuan Academy of Agricultural Sciences.3) C and L indicate compact and loose plant type, respectively.

表1 参试小麦品种的基本信息 Table 1 Information of wheat varieties tested in this study

两地试验田前茬均为水稻, 广汉点试验地块属平原冲积土, 肥力较高, 0~20 cm耕层两年平均含有机质4.75%、速效氮241.5 mg kg-1、速效磷8.2 mg kg-1、速效钾120.0 mg kg-1; 江油点试验地块位于浅丘台地, 黏土质, 肥力中上等, 0~20 cm土壤平均含有机质2.20%、速效氮122.0 mg kg-1、速效磷21.6 mg kg-1、速效钾105.0 mg kg-1。与常年相比, 2011年度小麦生育中期遭遇持续低温天气, 对开花结实产生了较大影响, 穗粒数较常年明显下降; 2012年度小麦灌浆中期遭遇高温天气, 灌浆期缩短, 千粒重明显低于常年水平。
采用随机区组设计, 3次重复, 小区面积20 m2。两类品种均按超高产栽培技术管理, 采用免耕穴播, 行距20.0~23.3 cm, 穴距10.0~13.3 cm, 播后覆盖稻草, 基本苗约240株 m-2。于10月28至29日播种, 播种时每公顷施纯氮165 kg、P2O5和K2O各75 kg, 其中60%的纯氮和全部磷钾肥用作底肥, 40%的纯氮用作拔节追肥; 拔节期灌水1次; 全生育期严格防控病虫害。
1.2 性状调查和计算方法四川盆地小麦分蘖时间很短, 冬前(冬至苗)群体大小对后期物质积累和产量建成至关重要。出苗后通过匀苗使各年各点和各品种的基本苗保持一致。从三叶期开始定点调查苗情, 每周一次, 直至拔节。于分蘖盛期、拔节初期、开花期和成熟期调查单株(茎)干重、幼穗干重等个体性状和单位面积穗数、粒数、干物质积累量等群体性状。成熟期分茎鞘、叶片、穗轴+颖壳、籽粒分别烘干(105℃至恒重)后称干重。成熟后按小区收获计产, 籽粒产量按含水率13.5%计算。
参考Fischer[ 16]描述的方法计算干物质积累速率(CGR), 参考del Blanco等[ 17]报道的方法计算生物生产率和籽粒生产率。花后干物质积累量(kg hm-2) = 成熟期地上部干物质积累量 - 开花期地上部干物质积累量[ 18]; 干物质转移量(kg hm-2) = 开花期地上部干物质积累量 - 成熟期地上部营养器官干物质积累量[ 18]; 干物质转移率(%) = 干物质转移量/开花期地上部干物质积累量 × 100[ 18]; 转移干物质对籽粒的贡献率(%) = 干物质转移量/籽粒干重 × 100[ 18]
1.3 统计分析采用SAS统计软件(SAS Institute Inc., 1997)和
Microsoft Excel统计分析和作图。先将同一类型品种平均, 然后对2个品种类型(即SHY品种和对照)成对比较, 数据按2011年广汉(2011GH)、2011年江油(2011JY)、2012年广汉(2012GH)、2012年江油(2012JY) 4个环境及环境均值(mean over environments) 列出。

2 结果与分析2.1 不同品种类型之间分蘖成穗特性比较各环境下两类品种的基本苗一致, 但因分蘖力不同导致主要生育阶段的群体数量都呈现出显著差异。除2012年广汉环境之外, SHY品种的冬至苗都显著高于对照, 最高苗和穗数都有类似结果。冬至苗、最高苗、穗数和分蘖力的4个环境平均值都呈现SHY品种显著高于对照种(表2)。
表2
Table 2
表2(Table 2)
表2 超高产(SHY)与一般高产(CK)小麦品种的分蘖成穗比较 Table 2 Comparison of tillering ability and fertile spike percentage between super-high-yield (SHY) and common high-yield (CK) varieties of wheat
环境 Environment品种类型 Type of variety密度 Seedling density (m-2)有效穗 Fertile spike (m-2)分蘖力 Tiller number per plant成穗率 Spike percentage (%)
基本苗 Basic number of seedlings冬至苗 Number at winter solstice最高苗 Maximum number of seedlings
2011
广汉 GuanghanSHY231±2.6656±24.7*995±83.0*436±13.6*3.32±0.4142.3±2.8
CK218±7.2574±47.9896±113.0411±46.13.11±0.5245.9±7.6
江油 JiangyouSHY243±11.7556±46.0*593±38.0*426±18.7**1.44±0.04*71.8±7.5
CK233±9.5430±40.9489±55.9366±18.91.10±0.2574.8±10.0
2012
广汉 GuanghanSHY243±2.0720±72.0720±72.0461±16.1*1.96±0.2665.4±7.2*
CK247±2.4742±70.3742±70.3432±42.82.00±0.2959.6±5.6
江油 JiangyouSHY241±8.0681±34.4*799±29.2*473±19.7*2.31±0.16*59.2±1.3*
CK245±3.8647±78.4696±89.8451±44.61.84±0.3664.8±9.8
平均 MeanSHY242±10.3653±75.3*778±161.6*445±28.1*2.26±0.78*59.7±12.4
CK235±13.2599±129.6706±167.5415±49.32.01±0.8161.9±13.4
***分别表示同一环境下两类品种在0.05和0.01水平差异显著。
* and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively..

表2 超高产(SHY)与一般高产(CK)小麦品种的分蘖成穗比较 Table 2 Comparison of tillering ability and fertile spike percentage between super-high-yield (SHY) and common high-yield (CK) varieties of wheat

2.2 不同品种类型之间产量及产量构成比较SHY品种在2011年广汉、2011年江油、2012年广汉、2012年江油4个环境的单产依次为8812、 9146、9396和9999 kg hm-2, 分别比对照高16.3%、24.0%、26.5%和30.0%, 4个环境均值为9338 kg hm-2, 比对照高24.2%。每个环境和综合平均方面SHY品种都显著高于对照(表3)。产量结构方面, SHY品种的穗数均高于对照, 除2011广汉外差异均显著; 穗粒数在2011年度的2个环境下SHY品种与对照之间差异不显著, 但2012年度极显著高于对照, 幅度达20.2%。每平方米粒数与穗数的表现趋势一致, 即除2011年广汉之外的所有环境, SHY品种均显著高于对照。两类品种的千粒重差异在年度间表现略有不同, 但多数环境下差异不显著(表3)。
表3
Table 3
表3(Table 3)
表3 超高产品种(SHY)与一般品种(CK)产量及产量构成比较 Table 3 Comparison of grain yield and yield components between super-high-yield (SHY) and common high-yield (CK) varieties
环境 Environment品种类型 Type of variety产量 Grain yield (kg hm-2)穗数 Spike number (×104 hm-2)穗粒数 Grain number per spike粒数 Grain number (m-2)千粒重 Thousand-grain weight (g)
2011
广汉 GuanghanSHY8812±119*436±938.9±4.616301±194449.8±2.0*
CK7576±465411±4638.4±6.715913±186948.0±4.0
江油 JiangyouSHY9146±423**426±16*38.8±3.116275±2049*50.5±0.2
CK7374±996366±1938.1±9.114619±292149.9±4.3
2012
广汉 GuanghanSHY9396±252**461±16*46.4±7.1**21289±2608**44.7±3.5
CK7425±1547432±4338.6±14.416285±558045.1±5.4
江油 JiangyouSHY9999±576**473±20*45.3±5.6**21434±2741**46.1±2.8
CK7693±1965451±4537.7±13.716829±562347.1±4.8
平均 MeanSHY9338±559**449±24*42.3±5.8**18825±3328**47.8±3.3
CK7517±1294415±4938.2±10.815911±416047.5±4.7
***分别表示同一环境下两类品种在0.05和0.01水平差异显著。
* and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.

表3 超高产品种(SHY)与一般品种(CK)产量及产量构成比较 Table 3 Comparison of grain yield and yield components between super-high-yield (SHY) and common high-yield (CK) varieties

2.3 不同品种类型之间个体、群体干重比较2.3.1 不同阶段个体干重差异 在生育前期SHY品种的个体干重明显高于对照品种, 如拔节期2011GH、2011JY、2012GH、Mean环境SHY品种的单株干重依次比CK高21.1%、14.4%、21.5%和14.0%。但在生育后期, 2类品种之间的单茎干重十分接近, SHY品种在保持穗数优势的情况下仍然保持了较高的个体质量(表4)。
表4
Table 4
表4(Table 4)
表4 超高产品种(SHY)与一般品种(CK)主要生育阶段个体干重比较 Table 4 Comparison of dry matter of individual at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (g)
环境 Environment品种类型 Type of variety分蘖期单株 Single plant at tillering stage拔节期单株 Single plant at jointing stage开花期单茎 Single stem at flowering stage开花期幼穗 Panical at flowering stage成熟期单茎 Single stem at maturity stage
2011
广汉 GuanghanSHY0.119±0.0200.688±0.025*2.374±0.1700.313±0.0263.70±0.17
CK0.101±0.0170.568±0.0642.369±0.3050.324±0.0423.60±0.37
江油 JiangyouSHY0.236±0.017*0.882±0.052*2.619±0.0820.360±0.0063.46±0.06
CK0.177±0.0210.771±0.0672.634±0.3210.381±0.0363.48±0.48
2012
广汉 GuanghanSHY0.375±0.0321.266±0.100*2.824±0.2870.444±0.0753.75±0.33
CK0.326±0.0241.042±0.0812.789±0.3020.431±0.0513.71±0.65
江油 JiangyouSHY0.346±0.0181.115±0.0232.646±0.0430.408±0.0243.51±0.41
CK0.324±0.0261.088±0.0772.700±0.2870.406±0.0433.68±0.54
平均 MeanSHY0.269±0.107*0.988±0.236*2.616±0.2230.381±0.0623.61±0.27
CK0.232±0.1010.867±0.2262.623±0.3280.385±0.0583.62±0.50
***分别表示同一环境下两类品种在0.05和0.01水平差异显著。
* and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.

表4 超高产品种(SHY)与一般品种(CK)主要生育阶段个体干重比较 Table 4 Comparison of dry matter of individual at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (g)

2.3.2 不同阶段群体干重差异 除了个别环境外, SHY品种的群体干重都显著或极显著高于对照品种, 尤其在降雨稀少使丘陵土壤相对较干的情况下(2011年江油), SHY品种在生育前期的群体干重极显著高于对照品种, 分蘖期、拔节期分别高出38.1%和26.4%, 其干物质转移量也显著高于对照品种, 4个环境表现一致(表5)。从干物质积累速率看, 无论是不同生育阶段还是全生育期SHY品种都显著高于对照品种(图1-A)。SHY品种的干物质转移率除2011年广汉环境外一般达到30%左右, 各试验环境下均显著高于对照品种(图1-B)。且多数环境下SHY品种的转移干物质对产量的贡献率也显著高于对照品种(图1-C)。
表5
Table 5
表5(Table 5)
表5 超高产品种(SHY)与一般品种(CK)主要生育阶段群体干重比较 Table 5 Comparison of dry matter of population at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (kg hm-2)
环境 Environment品种类型 Type of variety分蘖期 Tillering stage拔节期 Jointing stage开花期全株 Whole plant at flowering开花期幼穗 Spike at flowering成熟期 Maturity stage干物质转移量 Dry matter translocation
2011
广汉 GuanghanSHY296±39*1785±57**10828±3091335±6915821±392*2585±371*
CK242±401320±16710548±4571345±11814978±8282085±800
江油 JiangyouSHY511±27**2083±129**11391±75*1537±70*14911±702*4345±398*
CK370±481648±24210375±5291472±7713513±8773204±639
2012
广汉 GuanghanSHY845±50*2900±35**13027±1028*2042±189*17241±926*3867±951**
CK808±572520±19711945±6291846±15815800±15852531±751
江油 JiangyouSHY709±592742±157**12484±3181929±147*17117±616*3966±805*
CK704±922554±22512053±5101817±10316212±13342456±677
平均 MeanSHY590±220*2377±488*11932±10251711±132*16273±1163*3691±599*
CK531±2442011±58311230±9341620±14715126±15432569±793
***分别表示同一环境下两类品种在0.05和0.01水平差异显著。
* and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.

表5 超高产品种(SHY)与一般品种(CK)主要生育阶段群体干重比较 Table 5 Comparison of dry matter of population at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (kg hm-2)

图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 小麦超高产(SHY)和一般高产品种(CK)的干物质积累速率(A)、干物质转移率(B)和转移干物质对产量的贡献率(C)S-J: 播种至拔节; J-F: 拔节至开花; F-M: 开花至成熟; S-M: 播种至成熟。2011G: 2011广汉; 2011J: 2011江油; 2012G: 2012广汉; 2012J: 2012江油; MOE: 各环境平均。误差线上字母不同表示品种类型间存在显著差异( P< 0.05)。Fig. 1 Accumulation speed (A), translocation efficiency (B), and contribution to grain (C) of dry matter in super-high-yield (SHY) and common-high-yield (CK) wheat varietiesS-J: sowing to jointing; J-F: jointing to flowering; F-M: flowering to maturity; S-M: sowing to maturity. 2011G: 2011 Guanghan; 2011J: 2011 Jiangyou; 2012G: 2012 Guanghan; 2012J: 2012 Jiangyou; MOE: Mean of environments. Different letters above error bars indicate significant difference between two types of varieties ( P< 0.05).

2.3.3 成熟期干物质在各器官的分配比例 多数环境下对照品种单茎的茎鞘叶、穗轴颖壳等干重都显著高于SHY品种, 而单茎籽粒重都显著低于SHY品种。相应地, 对照品种非经济器官的干重比例都显著高于SHY品种。按各环境下的平均值, 对照品种茎鞘叶、穗轴颖壳所占比例分别比SHY品种高3.5个百分点和1.2个百分点(表6)。
表6
Table 6
表6(Table 6)
表6 超高产品种(SHY)与一般品种(CK)成熟期干物质在各器官的分配比例 Table 6 Proportional distribution of dry matter to different organs at maturity between super-high-yield (SHY) and common high-yield (CK) varieties
环境 Environment品种类型 Type of variety单茎干物质积累量Dry matter accumulation per stem (g)分配比例Distribution rate (%)
茎+鞘+叶 Stem+sheath+leaf穗轴+颖壳 Rhachis+glume籽粒 Grain茎+鞘+叶 Stem+sheath+leaf穗轴+颖壳 Rhachis+glume籽粒 Grain
2011
广汉 GuanghanSHY1.53±0.050.40±0.031.67±0.19*42.6±2.5*11.1±1.046.3±3.3*
CK1.57±0.170.39±0.051.55±0.1844.8±2.811.2±0.844.0±2.3
江油 JiangyouSHY1.49±0.05*0.41±0.04*1.57±0.14*42.9±2.1*12.0±1.3*45.1±3.3*
CK1.54±0.190.45±0.041.48±0.3544.6±4.413.2±2.342.1±6.3
2012
广汉 GuanghanSHY1.25±0.10*0.46±0.04*1.67±0.17*37.0±0.7*13.6±0.5**49.3±1.2**
CK1.34±0.130.53±0.081.47±0.4741.1±6.816.0±2.642.8±8.6
江油 JiangyouSHY1.13±0.15*0.46±0.07*1.59±0.16*35.6±1.5**14.5±0.7*50.0±1.7**
CK1.35±0.170.51±0.041.46±0.4641.4±7.415.7±2.543.0±9.4
平均 MeanSHY1.35±0.19*0.43±0.05*1.62±0.15*39.5±3.8*12.8±1.6*47.7±3.0**
CK1.45±0.190.47±0.071.49±0.3643.0±5.614.0±2.943.0±6.8
***分别表示同一环境下两类品种在0.05和0.01水平差异显著。
* and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.

表6 超高产品种(SHY)与一般品种(CK)成熟期干物质在各器官的分配比例 Table 6 Proportional distribution of dry matter to different organs at maturity between super-high-yield (SHY) and common high-yield (CK) varieties

2.4 产量构成因子与干物质性状的相关性2.4.1 产量构成因素间的相关性 籽粒产量与单位面积穗数、粒数和每穗粒数均呈极显著正相关, 相关系数依次为0.609、0.493和0.797, 与千粒重相关不明显; 每平方米粒数与穗数、穗粒数呈极显著正相关, 而千粒重与每平方米粒数和穗粒数呈极显著负相关, 表明提高穗数和穗粒数或二者的乘积是实现高产之关键(表7)。
表7
Table 7
表7(Table 7)
表7 参试小麦品种籽粒产量构成因素间、与植株个体和群体干重及干物质积累速率的相关分析( n=40) Table 7 Correlation coefficients among grain yield components and their correlations with dry matter accumulation at individual or population level and rate of dry matte accumulation in tested wheat varieties ( n=40)
籽粒 产量 GY每平方 米穗数 SN穗粒数 GN每平方 米粒数 GNM千粒重 TGW
产量及其构成因素 Grain yield and its components籽粒产量 Grain yield (GY)1.0000.609**0.493**0.797**-0.168
每平方米穗数 Spike number per square meter (SN)1.000-0.1310.487**-0.013
穗粒数 Grain number per spike (GN)1.0000.798**-0.758**
每平方米粒数 Grain number per square meter (GNM)1.000-0.667**
千粒重 Thousand-grain weight (TGW)1.000
单株(茎)干重 Dry matter per plant or stem分蘖期(单株) Tillering stage (plant)0.607**0.570**0.379*0.671**-0.420*
拔节期(单株) Jointing stage (plant)0.597**0.545**0.358*0.631**-0.379*
开花期(单茎) Flowering stage (stem)0.227-0.2950.695**0.422*-0.502**
开花期幼穗 Spike at flowering stage0.327-0.0260.701**0.598**-0.587**
花期幼穗比例 Proportion of spike at flowering stage0.3300.2830.456**0.583**-0.462**
成熟期(单茎) Maturity stage (stem)0.029-0.395*0.601**0.297-0.452**
群体干重 Dry matter of population分蘖期Tillering stage0.559**0.547**0.424*0.699**-0.500**
拔节期 Jointing stage0.650**0.643**0.370*0.703**-0.414*
开花期总干重 Total dry matter at flowering stage0.685**0.518**0.509**0.743**-0.415*
开花期幼穗 Spike at flowering stage0.603**0.492**0.544**0.769**-0.522**
成熟期 Maturity stage0.652**0.577**0.488**0.772**-0.453*
干物质积累 Dry matter accumulation播种-拔节 Sowing-jointing0.581**0.544**0.426*0.703**-0.474*
拔节-开花 Jointing-flowering0.223-0.0550.020-0.0160.429*
开花-成熟 Flowering-maturity-0.273-0.353-0.131-0.2910.212
生物生产率 Biomass production rate0.665**0.3840.534**0.733**-0.298
籽粒生产率 Grain production rate0.705**0.2940.3760.520**0.087
* P< 0.05;** P< 0.01.

表7 参试小麦品种籽粒产量构成因素间、与植株个体和群体干重及干物质积累速率的相关分析( n=40) Table 7 Correlation coefficients among grain yield components and their correlations with dry matter accumulation at individual or population level and rate of dry matte accumulation in tested wheat varieties ( n=40)

2.4.2 产量构成因素与个体、群体干重的相关性
籽粒产量与分蘖期、拔节期的单株干重, 以及各生育时期的群体干重均呈极显著正相关, 每平方米穗数的表现跟籽粒产量类似, 但与成熟期单茎干重呈显著负相关。穗粒数与所有个体、群体干重都呈显著或极显著正相关。每平方米粒数是穗数和穗粒数的综合反映, 与除了成熟期单茎干重之外的所有干物质参数呈显著或极显著正相关(表7)。千粒重与各生育阶段个体和群体干重都呈显著或极显著负相关。
2.4.3 产量构成因素与干物质积累速率的相关性
籽粒产量与播种至拔节的干物质积累速率、生物生产率和籽粒生产率呈极显著正相关, 每平方米穗数与播种至拔节的干物质积累速率呈极显著正相关, 每穗粒数与播种至拔节的干物质积累速率、生物生产率呈显著正相关, 每平方米粒数与播种至拔节的干物质积累速率、生物生产率和籽粒生产率呈极显著正相关(表7)。很明显, 播种至拔节阶段的干物质积累速率对产量建成十分重要。

3 讨论超高产品种4个环境平均单产9338 kg hm-2, 达到普遍认同的9000 kg hm-2以上的超高产水平。仅2011广汉环境略低于9000 kg hm-2, 主要原因是2011年小麦生育中期遭遇持续低温, 导致结实率下降。超高产品种的产量结构为穗数426~473万hm-2, 每穗粒数38.8~46.4, 千粒重44.7~50.5 g, 相当于黄淮麦区的大穗型或中间型品种[ 7, 8, 10], 但穗数水平已显著高于四川盆地现有绝大多数生产品种, 也比过去的高产典型增加约20%[ 14]。过去一直认为四川盆地穗数难以突破450×104 hm-2, 高产小麦特征是低穗容(约375×104 hm-2)、高穗重(约2.0 g)[ 19, 20], 本研究揭示出四川盆地小麦高产的一种新思路。单位面积粒数与粒重之间广泛存在显著的负相关, 如何在
提高单位面积粒数的同时稳定粒重, 或二者的协调提高, 成为科学家关注的焦点和高产再高产的关键[ 16, 21, 22], 而人工合成小麦新资源在这方面优势明显[ 15, 17, 23]。本研究中的3个超高产品种也正是利用人工合成小麦育成, 其单位面积粒数在达到较高水平时还能保持较高的粒重, 即高粒数与高粒重协调较好, 从而为实现超高产奠定了基础(表3)。
现代小麦的收获指数已达相当高的水平, 进一步高产必须提高生物产量[ 17, 24]。与7500 kg hm-2相比, 9000 kg hm-2超高产首先是生物产量提高15%~ 30%[ 5, 6, 8]。本研究结果同样显示, 籽粒产量与生物产量呈极显著正相关, 超高产品种的生物产量显著高于一般品种。同时, 物质生产、积累与分配特性对高产至关重要。研究表明, 粒数与开花期穗干重显著正相关[ 16, 25]。本研究中每穗粒数与开花期单茎干重、单茎幼穗干重及其所占比例均呈极显著正相关, 而粒数与开花期幼穗干重也极显著正相关(图2)。超高产品种开花期单位面积幼穗干重多数环境下均显著高于一般品种, 相应地粒数和产量也显著高于一般品种。
图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 单茎(A)和群体(B)水平粒数( x)与开花期幼穗干重( y1)及其所占比例( y2)的关系Fig. 2 Relationship between grain number ( x) and dry weight of spike at flowering stage ( y1) or proportion of spike dry weight ( y2) at single stem (A) and population (B) level

花前和花后物质生产对小麦产量建成都很重要, 至于二者对产量的贡献大小则取决于特定生态条件和品种产量水平。在干旱、贫瘠等不利生产条件下, 转移干物质对籽粒灌浆和产量的贡献率更高[ 18, 26], 而在良好生产条件下, 花后干物质的贡献率更大[ 27]。在本研究中, 所有品种的转移干物质贡献率均超过了40%, 明显高于长江中下游地区, 而超高产品种又高于一般品种, 尤其在灌浆后期遭遇高温天气的2012年更为明显。至于超高产品种与一般品种在物质生产和分配特性上的差异, 是否与其遗传背景有关, 值得深入研究。同化产物必须更多地向经济器官即籽粒转移, 才能提高经济系数[ 28]。超高产品种在茎鞘叶、穗轴及颖壳的干物质比例都显著低于一般品种, 从而在提高总积累量的同时也提高了经济系数。内麦836等一般品种尽管营养生长旺盛, 干物质积累量也较高, 但呈现出“源”足、“流”不畅、籽粒不饱满、经济系数较低的特点, 因此难以实现超高产。
4 结论特定生态区小麦超高产品种有其独特的产量结构和物质生产与积累特点。在四川盆地高温高湿与弱光照生态区, 超高产小麦分蘖力较强, 单位面积粒数显著高于一般品种, 且能在较高的粒数水平上保持较高的粒重。超高产品种中前期干物质积累速度快, 各个生育阶段干物质积累量大, 而成熟后分配到籽粒的干物质比例较高, 干物质转移量、转移效率和转移干物质对产量的贡献率比一般品种更高。
致谢: 本研究中所用品种的1B·1R易位系和矮秆基因检测得到了四川省农业科学院作物研究所杨武云实验室的支持和帮助, 英文摘要得到了CIMMYT小麦育种家Rosewarne Garry博士的斧正, 在此一并致以最诚挚的谢意。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。

参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]Chakraborty S, Newton A C. Climate change, plant diseases and food security: an overview. Plant Pathol, 2011, 60: 2-14[本文引用:1][JCR: 2.125]
[2]于振文. 小麦产量与品质生理及栽培技术. 北京: 中国农业出版社, 2006. pp3-12
Yu Z W. Grain Yield and Quality of Wheat and Cultivation Technologies. Beijing: China Agriculture Press, 2006. pp3-12(in Chinese)[本文引用:1]
[3]季书勤, 赵淑章, 王韶中, 吕凤荣, 刘媛媛, 张荣英, 仲有政. 温麦6号小麦9000 kg/hm2若干群体质量指标研究初报. 作物学报, 1998, 24: 865-869
Ji S Q, Zhao S Z, Wang S Z, F R, Liu Y Y, Zhang R Y, Zhong Y Z. The preliminary study on populations quality indexes in Wenmai 6 wheat with yield of 9000 kg per hectare. Acta Agron Sin, 1998, 24: 865-869 (in Chinese with English abstract)
[本文引用:1][CJCR: 1.8267]
[4]余松烈, 于振文, 董庆裕, 王东, 张永丽, 姚德常, 王坚强. 小麦亩产789. 9 kg高产栽培技术思路. 山东农业科学, 2010, (4): 11-12
Yu S L, Yu Z W, Dong Q Y, Wang D, Zhang Y L, Yao D C, Wang J Q. Theory of cultivation techniques for wheat with yield of 789. 9 kg per mu. Shand ong Agric Sci, 2010, (4): 11-12 (in Chinese)[本文引用:1]
[5]于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28: 577-585
Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan C L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow river and Huaihe River Districts. Acta Agron Sin, 2002, 28: 577-585 (in Chinese with English abstract)
[本文引用:2][CJCR: 1.8267]
[6]丁锦峰, 杨佳凤, 王云翠, 陈芳芳, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 长江中下游稻茬小麦超高产群体干物质积累与分配特性. 麦类作物学报, 2012, 32: 1118-1123
Ding J F, Yang J F, Wang Y C, Chen F F, Feng C N, Zhu X K, Li C Y, Peng Y X, Guo W S. Accumulation and distribution characteristics of dry matter of super high yield wheat under rice stubble in middle and lower reaches of the Yangtse River. J Triticeae Crops, 2012, 32: 1118-1123 (in Chinese with English abstract)[本文引用:2]
[7]王志芬, 吴科, 宋良增, 王守瑰, 范仲学, 张凤云, 朱连先, 张福锁. 山东省不同穗型超高产小麦产量构成因素分析与选择思路. 山东农业科学, 2001, (4): 6-8
Wang Z F, Wu K, Song L Z, Wang S G, Fan Z X, Zhang F Y, Zhu L X, Zhang F S. Analysis of yield elements for super high- yielding wheat varieties with different spike type and selection strategy in Shand ong Province. Shand ong Agric Sci, 2001, (4): 6-8 (in Chinese with English abstract)[本文引用:3]
[8]孙亚辉, 李瑞奇, 党红凯, 张馨文, 李慧玲, 李雁鸣. 河北省超高产冬小麦群体和个体生育特性及产量结构特点. 河北农业大学学报, 2007, 30(3): 1-8
Sun Y H, Li R Q, Dang H K, Zhang X W, Li H L, Li Y M. Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province. J Agric Univ Hebei, 2007, 30(3): 1-8 (in Chinese with English abstract)[本文引用:4][CJCR: 0.5918]
[9]于振文, 潘庆民, 董庆裕. 冬小麦超高产栽培. 北京: 中国农业出版社, 1999. pp54-55
Yu Z W, Pan Q M, Dong Q Y. Super High Yield Cultivation of Winter Wheat. Beijing: China Agriculture Press, 1999. pp54-55(in Chinese)[本文引用:1]
[10]崔党群, 张娟, 闻捷, 王俊振. 黄淮冬麦区超高产小麦品种的产量结构模式研究. 华北农学报, 2001, 16(4): 1-5
Cui D Q, Zhang J, Wen J, Wang J Z. Studies on the models for yield structure of super-high-yielding winter wheat cultivars in Huang-Huai wheat region. Acta Agric Boreali-Sin, 2001, 16(4): 1-5 (in Chinese with English abstract)[本文引用:2][CJCR: 2.0855]
[11]傅兆麟, 李洪琴. 黄淮冬麦区小麦超高产的几个问题探讨. 麦类作物, 1998, 18(6): 48-51
Fu Z L, Li H Q. Discuss some problems on super high yielding of wheat in Huang-Huai wheat region. Tritical Crops, 1998, 18(6): 48-51 (in Chinese)[本文引用:1]
[12]杜永, 王艳, 王学红, 刘辉, 杨成, 杨建昌. 稻麦两熟区超高产小麦株型特征研究. 麦类作物学报, 2008, 28: 1075-1079
Du Y, Wang Y, Wang X H, Liu H, Yang C, Yang J C. Plant-type characteristics of super-high-yield wheat in rice-wheat cropping system. J Triticeae Crops, 2008, 28: 1075-1079 (in Chinese with English abstract)[本文引用:1]
[13]于振文, 潘庆民, 姜东, 张永丽, 王东. 9000 kg/公顷小麦施氮量与生理特性分析. 作物学报, 2003, 29: 37-43
Yu Z W, Pan Q M, Jiang D, Zhang Y L, Wang D. Analysis of the amount of nitrogen applied and physiological characteristics in wheat of the yield level of 9000 kg per hectare. Acta Agron Sin, 2003, 29: 37-43 (in Chinese with English abstract)
[本文引用:1][CJCR: 1.8267]
[14]汤永禄, 李朝苏, 吴春, 李生荣, 黄辉跃, 王常玲. 四川盆地弱光照生态区小麦超高产技术途径分析. 麦类作物学报, 2013, 33: 51-59
Tang Y L, Li C S, Wu C, Li S R, Huang H Y, Wang C L. Analysis on the technical measures for super high yield of wheat (over 9 t hm-2) in Sichuan Basin with weak light. J Triticeae Crops, 2013, 33: 51-59 (in Chinese with English abstract)[本文引用:3]
[15]李俊, 魏会廷, 杨粟洁, 李朝苏, 汤永禄, 胡晓蓉, 杨武云. 川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应. 作物学报, 2009, 35: 2167-2173
Li J, Wei H T, Yang S J, Li C S, Tang Y L, Hu X R, Yang W Y. Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. Acta Agron Sin, 2009, 35: 2167-2173 (in Chinese with English abstract)
[本文引用:2][CJCR: 1.8267]
[16]Fisher R A. Wheat physiology: a review of recent developments. Crop Pasture Sci, 2011, 62: 95-114[本文引用:3][JCR: 1.418]
[17]del Blanco I A, Rajaram S, Kronstad W E. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci, 2001, 41: 670-676[本文引用:3][JCR: 1.641]
[18]周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012, 32: 4123-4131
Zhou L, Wang Z H, Li F C, Meng X Y, Li K Y, Li S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland . Acta Ecol Sin, 2012, 32: 4123-4131 (in Chinese with English abstract)[本文引用:5]
[19]余遥. 四川小麦. 成都: 四川科学技术出版社, 1998. pp168-170
Yu Y. Wheat in Sichuan of China, Chengdu: Sichuan Publishing House of Science and Technology, 1998. pp168-170(in Chinese)[本文引用:1]
[20]李跃建. 四川小麦产量性状的改良和超高产育种策略. 西南农业学报, 1998, 11(育种栽培专辑): 19-25
Li Y J. Yield Improvement and Strategies of Supper High Yield Breeding for Wheat in Sichuan. Southwest China J Agric Sci, 1998, 11(special issue for breeding and cultivation): 19-25 (in Chinese with English abstract)[本文引用:1]
[21]Slafer G A, Calderini D F, Miralles D J. Yield Components and compensation in wheat: opportunities for further increasing yield potential. In: Reynolds M P, Rajaram S, McNab A, eds. Increasing Yield Potential in Wheat: Breaking the Barriers. Mexico, D. F. : CIMMYT. 1996. pp101-133[本文引用:1]
[22]Tabitha A, Peter D J, Anton N, Robert Z. Breaking the 15 t/ha Wheat Yield Barrier. New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress. Brisbane, Australia, 26 Sep. -1 Oct. 2004, ISBN 1 920842 20 9, http: //www. cropscience. org. au[本文引用:1]
[23]汤永禄, 杨武云, 魏会廷, 李朝苏, 李俊. 利用人工合成六倍体小麦突破小麦产量瓶颈的机会与潜力. 中山大学学报(自然科学版), 2010, 29: 86-92
Tang Y L, Yang W Y, Wei H T, Li C S, Li J. Opportunities for breaking the barriers of wheat yield using synthetic hexaploid wheats. Acta Sci Nat Univ Sunyatseni, 2010, 29: 86-92 (in Chinese with English abstract)[本文引用:1][CJCR: 0.7977]
[24]周阳, 何中虎, 陈新民, 王德森, 张勇, 张改生. 30余年来北部冬麦区小麦品种产量改良遗传进展. 作物学报, 2007, 33: 1530-1535
Zhou Y, He Z H, Chen X M, Wang D S, Zhang Y, Zhang G S. Genetic gain of wheat breeding for yield in northern winter wheat zone over 30 years. Acta Agron Sin, 2007, 33: 1530-1535 (in Chinese with English abstract)
[本文引用:1][CJCR: 1.8267]
[25]Foulkes M J, Slafer G A, Davies W J, Berry P M, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot, 2011, 62: 469-486[本文引用:1][JCR: 5.364]
[26]Blum A, Sinmena B, Mayer J, Golan G, Shpiler L. Stem reserve mobilization supports wheat-grain filling under heat stress. Aust J Plant Physiol, 1994, 21: 771-781[本文引用:1]
[27]程顺和, 郭文善, 王龙俊. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp89-93
Chen S H, Guo W S, Wang L J. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Publishing House, 2012. pp89-93(in Chinese)[本文引用:1]
[28]张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000 kg 小麦氮素和干物质积累与分配特性. 作物学报, 2009, 35: 1086-1096
Zhang F Q, Wang X Y, Yu Z W, Wang X Z, Bai H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agron Sin, 2009, 35: 1086-1096 (in Chinese with English abstract)
[本文引用:1][CJCR: 1.8267]
相关话题/物质 环境 生育 四川 作物