关键词:四川盆地; 超高产小麦; 产量结构; 干物质积累和转运 Yield Component and Dry Matter Accumulation in Wheat Varieties with 9000 kg ha-1 Yield Potential in Sichuan Basin TANG Yong-Lu1,*, LI Chao-Su1, WU Chun1, WU Xiao-Li1, HUANG Gang1, HE Gang2 1 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
2 Bureau of Agriculture of Jiangyou City, Sichuan Province, Jiangyou 621700, China
AbstractThe objective of this study was to explore yield-forming characteristics of super-high-yield (SHY) wheat varieties that grow under high temperature, high humidity, and weak sunshine condition in Sichuan Basin, China. In four year × location environments, we tested the grain yield and its components of three SHY varieties and seven common high-yield varieties (control), as well as the characteristics of dry matter accumulation and translocation. The average yield of SHY varieties over environments reached 9338 kg ha-1, which was 24.2% higher than those of the controls. SHY varieties had average spike number of 449×104 ha-1, grain number per spike of 42.3, grain number of 18 825 m-2, and thousand-grain weight of 47.8 g, which were 8.2%, 10.7%, 18.3%, and 0.6% higher than those of the control. At various growth stages, SHY varieties had significantly higher rates and larger amounts of dry matter accumulation, especially at the early growing period. For example, the amount of dry matter accumulation in the SHY varieties was 11.1% and 18.2% higher than those of the controls at tillering and jointing stages, respectively. Moreover, compared with the control, SHY varieties had significantly higher amount of dry matter translocation, translocation efficiency, and contribution of remobilization to grain. At maturity, the proportion of dry matter in vegetative organs was 1.2%-3.5% lower in SHY variety than in the controls. There were significant correlations between grain yield and colony dry matter at various growth stages and individual dry matter at tillering and jointing stages. SHY varieties tested in this study possess strong tillering ability, early vigorous growth, and high levels of dry matter accumulation and translocation into grains, which ultimately result in the high grain yield.
Keyword:Sichuan Basin; Super-high-yield wheat; Yield component; Dry matter accumulation and translocation Show Figures Show Figures
随着人口的持续增长和可耕地的日益减少, 不断提高单产乃是保障粮食总量增长的必由之路[ 1, 2]。我国从20世纪90年代开始全面开展小麦超高产(≥9000 kg hm-2)研究, 经过20年, 各大麦区都取得了实质性突破, 先后育成大批超高产品种, 并在大田试验中达到预期高产目标, 最高产量达11 848 kg hm-2 [ 3, 4, 5, 6, 7, 8]。从高产到超高产的跨越, 是遗传改良、栽培管理、土壤培肥等多技术协同进步、多因子协同作用的结果。多数研究表明, 在北方小麦主产区, 多穗型、中间型和大穗型品种都能实现超高产, 虽技术路径有所不同, 但共同之处在于都显著提高了单位面积穗数[ 7, 8, 9, 10]。超高产品种具有叶片窄小、直立、耐肥抗倒[ 11, 12], 以及群体大、干物质积累多, 前期稳健、后期个体质量高等特点[ 13, 14]。 小麦超高产研究尽管成效显著, 但已有超高产典型仍局限在小面积甚至个别地块上, 大面积生产尚未上升到9000 kg hm-2以上的超高产水平; 而且因生态环境、品种、栽培技术等诸多原因, 使区域间发展极不平衡。四川盆地小麦单产水平在全国偏低, 研究也相对滞后, 直至21世纪初小麦高产育种和栽培才有所突破[ 14, 15], 但对超高产品种特性和栽培技术研究仍不够深入。本研究旨在利用近年最新育种成果, 选用产量潜力在9000 kg hm-2以上的3个超高产品种和7个代表性的一般高产品种, 通过两年两点的比较, 揭示四川盆地弱光照生态区超高产小麦品种的特性, 为超高产育种和生产提供指导。 1 材料与方法1.1 试验设计2010—2011和2011—2012年连续2个小麦生长季, 选择10个四川省代表性品种(表1)在四川广汉(30.99° N, 104.25° E, 海拔500 m)和江油(31.42° N, 104.48° E, 海拔650 m)进行田间试验。超高产(SHY)和一般品种(对照)的划分根据前期试验和超高产攻关验收结果, 单产≥9000 kg hm-2的品种视为SHY品种。 表1 Table 1 表1(Table 1)
表1 参试小麦品种的基本信息 Table 1 Information of wheat varieties tested in this study
品种类型 Type of variety
品种1) Variety1)
审定年份 Released year
系谱 Pedigree
矮秆基因 Dwarfing gene
1B∙1R2)
株型3) Plant type3)
超高产 Super high yield
川麦42 Chuanmai 42
2004
SynCD768/SW3243//川6415
Rht1, Rht4?
-
C
绵麦367 Mianmai 367
2010
1275-1/99-1522
Rht1
-
C
川麦104 Chuanmai 104
2012
川麦42/川农16
Rht1, Rht4?, Rht9?
-
C
一般高产(对照) Common high yield (CK)
川麦51 Chuanmai 51
2008
174/183//99-1572
Rht8
-
L
川麦55 Chuanmai 55
2009
SW3243/SW8688
Rht2, Rht9?
+
L
川麦56 Chuanmai 56
2009
川麦30/川麦42
Rht1, Rht9?
-
L
内麦836 Neimai 836
2008
5680/92R133
Rht2, Rht8
-
C
绵麦37 Mianmai 37
2004
96EW37/绵阳90-100
Rht2, Rht8, Rht5?
-
L
川育23 Chuanyu 23
2008
R59//郑9023/H435
Rht2, Rht8, Rht9?
-
L
西科麦5 Xikemai 5
2008
贵农21/96II-39
Rht2, Rht5?
+
L
1) 国审品种用粗体表示, 其他品种为四川省审定。2) +和-分别表示1B∙1R易位系和非1B∙1R系, 由四川省农业科学院作物研究所杨武云博士实验室检测。3) C和L分别表示紧凑和松散型。 1) Varieties in bold are nationally registered and other varieties are registered in Sichuan province.2) + and - indicate 1B∙1R and non 1B∙1R line, respectively, which were verified in the laboratory of Dr. Yang Wu-Yun from Crop Research Institute of Sichuan Academy of Agricultural Sciences.3) C and L indicate compact and loose plant type, respectively.
表1 参试小麦品种的基本信息 Table 1 Information of wheat varieties tested in this study
表2 超高产(SHY)与一般高产(CK)小麦品种的分蘖成穗比较 Table 2 Comparison of tillering ability and fertile spike percentage between super-high-yield (SHY) and common high-yield (CK) varieties of wheat
环境 Environment
品种类型 Type of variety
密度 Seedling density (m-2)
有效穗 Fertile spike (m-2)
分蘖力 Tiller number per plant
成穗率 Spike percentage (%)
基本苗 Basic number of seedlings
冬至苗 Number at winter solstice
最高苗 Maximum number of seedlings
2011
广汉 Guanghan
SHY
231±2.6
656±24.7*
995±83.0*
436±13.6*
3.32±0.41
42.3±2.8
CK
218±7.2
574±47.9
896±113.0
411±46.1
3.11±0.52
45.9±7.6
江油 Jiangyou
SHY
243±11.7
556±46.0*
593±38.0*
426±18.7**
1.44±0.04*
71.8±7.5
CK
233±9.5
430±40.9
489±55.9
366±18.9
1.10±0.25
74.8±10.0
2012
广汉 Guanghan
SHY
243±2.0
720±72.0
720±72.0
461±16.1*
1.96±0.26
65.4±7.2*
CK
247±2.4
742±70.3
742±70.3
432±42.8
2.00±0.29
59.6±5.6
江油 Jiangyou
SHY
241±8.0
681±34.4*
799±29.2*
473±19.7*
2.31±0.16*
59.2±1.3*
CK
245±3.8
647±78.4
696±89.8
451±44.6
1.84±0.36
64.8±9.8
平均 Mean
SHY
242±10.3
653±75.3*
778±161.6*
445±28.1*
2.26±0.78*
59.7±12.4
CK
235±13.2
599±129.6
706±167.5
415±49.3
2.01±0.81
61.9±13.4
*和**分别表示同一环境下两类品种在0.05和0.01水平差异显著。 * and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively..
表2 超高产(SHY)与一般高产(CK)小麦品种的分蘖成穗比较 Table 2 Comparison of tillering ability and fertile spike percentage between super-high-yield (SHY) and common high-yield (CK) varieties of wheat
表3 超高产品种(SHY)与一般品种(CK)产量及产量构成比较 Table 3 Comparison of grain yield and yield components between super-high-yield (SHY) and common high-yield (CK) varieties
环境 Environment
品种类型 Type of variety
产量 Grain yield (kg hm-2)
穗数 Spike number (×104 hm-2)
穗粒数 Grain number per spike
粒数 Grain number (m-2)
千粒重 Thousand-grain weight (g)
2011
广汉 Guanghan
SHY
8812±119*
436±9
38.9±4.6
16301±1944
49.8±2.0*
CK
7576±465
411±46
38.4±6.7
15913±1869
48.0±4.0
江油 Jiangyou
SHY
9146±423**
426±16*
38.8±3.1
16275±2049*
50.5±0.2
CK
7374±996
366±19
38.1±9.1
14619±2921
49.9±4.3
2012
广汉 Guanghan
SHY
9396±252**
461±16*
46.4±7.1**
21289±2608**
44.7±3.5
CK
7425±1547
432±43
38.6±14.4
16285±5580
45.1±5.4
江油 Jiangyou
SHY
9999±576**
473±20*
45.3±5.6**
21434±2741**
46.1±2.8
CK
7693±1965
451±45
37.7±13.7
16829±5623
47.1±4.8
平均 Mean
SHY
9338±559**
449±24*
42.3±5.8**
18825±3328**
47.8±3.3
CK
7517±1294
415±49
38.2±10.8
15911±4160
47.5±4.7
*和**分别表示同一环境下两类品种在0.05和0.01水平差异显著。 * and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.
表3 超高产品种(SHY)与一般品种(CK)产量及产量构成比较 Table 3 Comparison of grain yield and yield components between super-high-yield (SHY) and common high-yield (CK) varieties
表4 超高产品种(SHY)与一般品种(CK)主要生育阶段个体干重比较 Table 4 Comparison of dry matter of individual at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (g)
环境 Environment
品种类型 Type of variety
分蘖期单株 Single plant at tillering stage
拔节期单株 Single plant at jointing stage
开花期单茎 Single stem at flowering stage
开花期幼穗 Panical at flowering stage
成熟期单茎 Single stem at maturity stage
2011
广汉 Guanghan
SHY
0.119±0.020
0.688±0.025*
2.374±0.170
0.313±0.026
3.70±0.17
CK
0.101±0.017
0.568±0.064
2.369±0.305
0.324±0.042
3.60±0.37
江油 Jiangyou
SHY
0.236±0.017*
0.882±0.052*
2.619±0.082
0.360±0.006
3.46±0.06
CK
0.177±0.021
0.771±0.067
2.634±0.321
0.381±0.036
3.48±0.48
2012
广汉 Guanghan
SHY
0.375±0.032
1.266±0.100*
2.824±0.287
0.444±0.075
3.75±0.33
CK
0.326±0.024
1.042±0.081
2.789±0.302
0.431±0.051
3.71±0.65
江油 Jiangyou
SHY
0.346±0.018
1.115±0.023
2.646±0.043
0.408±0.024
3.51±0.41
CK
0.324±0.026
1.088±0.077
2.700±0.287
0.406±0.043
3.68±0.54
平均 Mean
SHY
0.269±0.107*
0.988±0.236*
2.616±0.223
0.381±0.062
3.61±0.27
CK
0.232±0.101
0.867±0.226
2.623±0.328
0.385±0.058
3.62±0.50
*和**分别表示同一环境下两类品种在0.05和0.01水平差异显著。 * and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.
表4 超高产品种(SHY)与一般品种(CK)主要生育阶段个体干重比较 Table 4 Comparison of dry matter of individual at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (g)
表5 超高产品种(SHY)与一般品种(CK)主要生育阶段群体干重比较 Table 5 Comparison of dry matter of population at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (kg hm-2)
环境 Environment
品种类型 Type of variety
分蘖期 Tillering stage
拔节期 Jointing stage
开花期全株 Whole plant at flowering
开花期幼穗 Spike at flowering
成熟期 Maturity stage
干物质转移量 Dry matter translocation
2011
广汉 Guanghan
SHY
296±39*
1785±57**
10828±309
1335±69
15821±392*
2585±371*
CK
242±40
1320±167
10548±457
1345±118
14978±828
2085±800
江油 Jiangyou
SHY
511±27**
2083±129**
11391±75*
1537±70*
14911±702*
4345±398*
CK
370±48
1648±242
10375±529
1472±77
13513±877
3204±639
2012
广汉 Guanghan
SHY
845±50*
2900±35**
13027±1028*
2042±189*
17241±926*
3867±951**
CK
808±57
2520±197
11945±629
1846±158
15800±1585
2531±751
江油 Jiangyou
SHY
709±59
2742±157**
12484±318
1929±147*
17117±616*
3966±805*
CK
704±92
2554±225
12053±510
1817±103
16212±1334
2456±677
平均 Mean
SHY
590±220*
2377±488*
11932±1025
1711±132*
16273±1163*
3691±599*
CK
531±244
2011±583
11230±934
1620±147
15126±1543
2569±793
*和**分别表示同一环境下两类品种在0.05和0.01水平差异显著。 * and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.
表5 超高产品种(SHY)与一般品种(CK)主要生育阶段群体干重比较 Table 5 Comparison of dry matter of population at main growing stages between super-high-yield (SHY) and common high-yield (CK) varieties (kg hm-2)
表6 超高产品种(SHY)与一般品种(CK)成熟期干物质在各器官的分配比例 Table 6 Proportional distribution of dry matter to different organs at maturity between super-high-yield (SHY) and common high-yield (CK) varieties
环境 Environment
品种类型 Type of variety
单茎干物质积累量Dry matter accumulation per stem (g)
分配比例Distribution rate (%)
茎+鞘+叶 Stem+sheath+leaf
穗轴+颖壳 Rhachis+glume
籽粒 Grain
茎+鞘+叶 Stem+sheath+leaf
穗轴+颖壳 Rhachis+glume
籽粒 Grain
2011
广汉 Guanghan
SHY
1.53±0.05
0.40±0.03
1.67±0.19*
42.6±2.5*
11.1±1.0
46.3±3.3*
CK
1.57±0.17
0.39±0.05
1.55±0.18
44.8±2.8
11.2±0.8
44.0±2.3
江油 Jiangyou
SHY
1.49±0.05*
0.41±0.04*
1.57±0.14*
42.9±2.1*
12.0±1.3*
45.1±3.3*
CK
1.54±0.19
0.45±0.04
1.48±0.35
44.6±4.4
13.2±2.3
42.1±6.3
2012
广汉 Guanghan
SHY
1.25±0.10*
0.46±0.04*
1.67±0.17*
37.0±0.7*
13.6±0.5**
49.3±1.2**
CK
1.34±0.13
0.53±0.08
1.47±0.47
41.1±6.8
16.0±2.6
42.8±8.6
江油 Jiangyou
SHY
1.13±0.15*
0.46±0.07*
1.59±0.16*
35.6±1.5**
14.5±0.7*
50.0±1.7**
CK
1.35±0.17
0.51±0.04
1.46±0.46
41.4±7.4
15.7±2.5
43.0±9.4
平均 Mean
SHY
1.35±0.19*
0.43±0.05*
1.62±0.15*
39.5±3.8*
12.8±1.6*
47.7±3.0**
CK
1.45±0.19
0.47±0.07
1.49±0.36
43.0±5.6
14.0±2.9
43.0±6.8
*和**分别表示同一环境下两类品种在0.05和0.01水平差异显著。 * and** indicate significant difference between SHY and CK varieties at P< 0.05 and P< 0.01, respectively.
表6 超高产品种(SHY)与一般品种(CK)成熟期干物质在各器官的分配比例 Table 6 Proportional distribution of dry matter to different organs at maturity between super-high-yield (SHY) and common high-yield (CK) varieties
表7 参试小麦品种籽粒产量构成因素间、与植株个体和群体干重及干物质积累速率的相关分析( n=40) Table 7 Correlation coefficients among grain yield components and their correlations with dry matter accumulation at individual or population level and rate of dry matte accumulation in tested wheat varieties ( n=40)
籽粒 产量 GY
每平方 米穗数 SN
穗粒数 GN
每平方 米粒数 GNM
千粒重 TGW
产量及其构成因素 Grain yield and its components
籽粒产量 Grain yield (GY)
1.000
0.609**
0.493**
0.797**
-0.168
每平方米穗数 Spike number per square meter (SN)
1.000
-0.131
0.487**
-0.013
穗粒数 Grain number per spike (GN)
1.000
0.798**
-0.758**
每平方米粒数 Grain number per square meter (GNM)
1.000
-0.667**
千粒重 Thousand-grain weight (TGW)
1.000
单株(茎)干重 Dry matter per plant or stem
分蘖期(单株) Tillering stage (plant)
0.607**
0.570**
0.379*
0.671**
-0.420*
拔节期(单株) Jointing stage (plant)
0.597**
0.545**
0.358*
0.631**
-0.379*
开花期(单茎) Flowering stage (stem)
0.227
-0.295
0.695**
0.422*
-0.502**
开花期幼穗 Spike at flowering stage
0.327
-0.026
0.701**
0.598**
-0.587**
花期幼穗比例 Proportion of spike at flowering stage
0.330
0.283
0.456**
0.583**
-0.462**
成熟期(单茎) Maturity stage (stem)
0.029
-0.395*
0.601**
0.297
-0.452**
群体干重 Dry matter of population
分蘖期Tillering stage
0.559**
0.547**
0.424*
0.699**
-0.500**
拔节期 Jointing stage
0.650**
0.643**
0.370*
0.703**
-0.414*
开花期总干重 Total dry matter at flowering stage
0.685**
0.518**
0.509**
0.743**
-0.415*
开花期幼穗 Spike at flowering stage
0.603**
0.492**
0.544**
0.769**
-0.522**
成熟期 Maturity stage
0.652**
0.577**
0.488**
0.772**
-0.453*
干物质积累 Dry matter accumulation
播种-拔节 Sowing-jointing
0.581**
0.544**
0.426*
0.703**
-0.474*
拔节-开花 Jointing-flowering
0.223
-0.055
0.020
-0.016
0.429*
开花-成熟 Flowering-maturity
-0.273
-0.353
-0.131
-0.291
0.212
生物生产率 Biomass production rate
0.665**
0.384
0.534**
0.733**
-0.298
籽粒生产率 Grain production rate
0.705**
0.294
0.376
0.520**
0.087
* P< 0.05;** P< 0.01.
表7 参试小麦品种籽粒产量构成因素间、与植株个体和群体干重及干物质积累速率的相关分析( n=40) Table 7 Correlation coefficients among grain yield components and their correlations with dry matter accumulation at individual or population level and rate of dry matte accumulation in tested wheat varieties ( n=40)
图2 单茎(A)和群体(B)水平粒数( x)与开花期幼穗干重( y1)及其所占比例( y2)的关系Fig. 2 Relationship between grain number ( x) and dry weight of spike at flowering stage ( y1) or proportion of spike dry weight ( y2) at single stem (A) and population (B) level
ChakrabortyS, NewtonA C. Climate change, plant diseases and food security: an overview. , 2011, 60: 2-14[本文引用:1][JCR: 2.125]
[2]
于振文. 小麦产量与品质生理及栽培技术. 北京: 中国农业出版社, 2006. pp3-12YuZ W. Grain Yield and Quality of Wheat and Cultivation Technologies. Beijing: China Agriculture Press, 2006. pp3-12(in Chinese)[本文引用:1]
[3]
季书勤, 赵淑章, 王韶中, 吕凤荣, 刘媛媛, 张荣英, 仲有政. 温麦6号小麦9000 kg/hm2若干群体质量指标研究初报. JiS Q, ZhaoS Z, WangS Z, LüF R, LiuY Y, ZhangR Y, ZhongY Z. The preliminary study on populations quality indexes in Wenmai 6 wheat with yield of 9000 kg per hectare. , 1998, 24: 865-869 (in Chinese with English abstract)[本文引用:1][CJCR: 1.8267]
[4]
余松烈, 于振文, 董庆裕, 王东, 张永丽, 姚德常, 王坚强. 小麦亩产789. 9 kg高产栽培技术思路. YuS L, YuZ W, DongQ Y, WangD, ZhangY L, YaoD C, WangJ Q. Theory of cultivation techniques for wheat with yield of 789. 9 kg per mu. , 2010, (4): 11-12 (in Chinese)[本文引用:1]
[5]
于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. YuZ W, TianQ Z, PanQ M, YueS S, WangD, DuanC L, DuanL L, WangZ J, NiuY S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow river and Huaihe River Districts. , 2002, 28: 577-585 (in Chinese with English abstract)[本文引用:2][CJCR: 1.8267]
[6]
丁锦峰, 杨佳凤, 王云翠, 陈芳芳, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 长江中下游稻茬小麦超高产群体干物质积累与分配特性. DingJ F, YangJ F, WangY C, ChenF F, FengC N, ZhuX K, LiC Y, PengY X, GuoW S. Accumulation and distribution characteristics of dry matter of super high yield wheat under rice stubble in middle and lower reaches of the Yangtse River. , 2012, 32: 1118-1123 (in Chinese with English abstract)[本文引用:2]
[7]
王志芬, 吴科, 宋良增, 王守瑰, 范仲学, 张凤云, 朱连先, 张福锁. 山东省不同穗型超高产小麦产量构成因素分析与选择思路. WangZ F, WuK, SongL Z, WangS G, FanZ X, ZhangF Y, ZhuL X, ZhangF S. Analysis of yield elements for super high- yielding wheat varieties with different spike type and selection strategy in Shand ong Province. , 2001, (4): 6-8 (in Chinese with English abstract)[本文引用:3]
[8]
孙亚辉, 李瑞奇, 党红凯, 张馨文, 李慧玲, 李雁鸣. 河北省超高产冬小麦群体和个体生育特性及产量结构特点. SunY H, LiR Q, DangH K, ZhangX W, LiH L, LiY M. Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province. , 2007, 30(3): 1-8 (in Chinese with English abstract)[本文引用:4][CJCR: 0.5918]
[9]
于振文, 潘庆民, 董庆裕. 冬小麦超高产栽培. 北京: 中国农业出版社, 1999. pp54-55YuZ W, PanQ M, DongQ Y. Super High Yield Cultivation of Winter Wheat. Beijing: China Agriculture Press, 1999. pp54-55(in Chinese)[本文引用:1]
[10]
崔党群, 张娟, 闻捷, 王俊振. 黄淮冬麦区超高产小麦品种的产量结构模式研究. CuiD Q, ZhangJ, WenJ, WangJ Z. Studies on the models for yield structure of super-high-yielding winter wheat cultivars in Huang-Huai wheat region. , 2001, 16(4): 1-5 (in Chinese with English abstract)[本文引用:2][CJCR: 2.0855]
[11]
傅兆麟, 李洪琴. 黄淮冬麦区小麦超高产的几个问题探讨. FuZ L, LiH Q. Discuss some problems on super high yielding of wheat in Huang-Huai wheat region. , 1998, 18(6): 48-51 (in Chinese)[本文引用:1]
[12]
杜永, 王艳, 王学红, 刘辉, 杨成, 杨建昌. 稻麦两熟区超高产小麦株型特征研究. DuY, WangY, WangX H, LiuH, YangC, YangJ C. Plant-type characteristics of super-high-yield wheat in rice-wheat cropping system. , 2008, 28: 1075-1079 (in Chinese with English abstract)[本文引用:1]
[13]
于振文, 潘庆民, 姜东, 张永丽, 王东. 9000 kg/公顷小麦施氮量与生理特性分析. YuZ W, PanQ M, JiangD, ZhangY L, WangD. Analysis of the amount of nitrogen applied and physiological characteristics in wheat of the yield level of 9000 kg per hectare. , 2003, 29: 37-43 (in Chinese with English abstract)[本文引用:1][CJCR: 1.8267]
[14]
汤永禄, 李朝苏, 吴春, 李生荣, 黄辉跃, 王常玲. 四川盆地弱光照生态区小麦超高产技术途径分析. TangY L, LiC S, WuC, LiS R, HuangH Y, WangC L. Analysis on the technical measures for super high yield of wheat (over 9 t hm-2) in Sichuan Basin with weak light. , 2013, 33: 51-59 (in Chinese with English abstract)[本文引用:3]
[15]
李俊, 魏会廷, 杨粟洁, 李朝苏, 汤永禄, 胡晓蓉, 杨武云. 川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应. LiJ, WeiH T, YangS J, LiC S, TangY L, HuX R, YangW Y. Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. , 2009, 35: 2167-2173 (in Chinese with English abstract)[本文引用:2][CJCR: 1.8267]
[16]
FisherR A. Wheat physiology: a review of recent developments. , 2011, 62: 95-114[本文引用:3][JCR: 1.418]
[17]
del Blanco I A, RajaramS, KronstadW E. Agronomic potential of synthetic hexaploid wheat-derived populations. , 2001, 41: 670-676[本文引用:3][JCR: 1.641]
[18]
周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. ZhouL, WangZ H, LiF C, MengX Y, LiK Y, LiS X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland . , 2012, 32: 4123-4131 (in Chinese with English abstract)[本文引用:5]
[19]
余遥. 四川小麦. 成都: 四川科学技术出版社, 1998. pp168-170YuY. Wheat in Sichuan of China, Chengdu: Sichuan Publishing House of Science and Technology, 1998. pp168-170(in Chinese)[本文引用:1]
[20]
李跃建. 四川小麦产量性状的改良和超高产育种策略. LiY J. Yield Improvement and Strategies of Supper High Yield Breeding for Wheat in Sichuan. , 1998, 11(special issue for breeding and cultivation): 19-25 (in Chinese with English abstract)[本文引用:1]
[21]
SlaferG A, CalderiniD F, MirallesD J. Yield Components and compensation in wheat: opportunities for further increasing yield potential. In: Reynolds M P, Rajaram S, McNab A, eds. Increasing Yield Potential in Wheat: Breaking the Barriers. Mexico, D. F. : 1996. pp101-133[本文引用:1]
[22]
TabithaA, PeterD J, AntonN, RobertZ. Breaking the 15 t/ha Wheat Yield Barrier. New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress. Brisbane, Australia, 26 Sep. -1 Oct. 2004, ISBN 1 920842 20 9, http: //www. cropscience. org. au[本文引用:1]
[23]
汤永禄, 杨武云, 魏会廷, 李朝苏, 李俊. 利用人工合成六倍体小麦突破小麦产量瓶颈的机会与潜力. TangY L, YangW Y, WeiH T, LiC S, LiJ. Opportunities for breaking the barriers of wheat yield using synthetic hexaploid wheats. , 2010, 29: 86-92 (in Chinese with English abstract)[本文引用:1][CJCR: 0.7977]
[24]
周阳, 何中虎, 陈新民, 王德森, 张勇, 张改生. 30余年来北部冬麦区小麦品种产量改良遗传进展. ZhouY, HeZ H, ChenX M, WangD S, ZhangY, ZhangG S. Genetic gain of wheat breeding for yield in northern winter wheat zone over 30 years. , 2007, 33: 1530-1535 (in Chinese with English abstract)[本文引用:1][CJCR: 1.8267]
[25]
FoulkesM J, SlaferG A, DaviesW J, BerryP M, Sylvester-BradleyR, MartreP, CalderiniD F, GriffithsS, ReynoldsM P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance. , 2011, 62: 469-486[本文引用:1][JCR: 5.364]
程顺和, 郭文善, 王龙俊. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp89-93ChenS H, GuoW S, WangL J. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Publishing House, 2012. pp89-93(in Chinese)[本文引用:1]
[28]
张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000 kg 小麦氮素和干物质积累与分配特性. ZhangF Q, WangX Y, YuZ W, WangX Z, BaiH L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. , 2009, 35: 1086-1096 (in Chinese with English abstract)[本文引用:1][CJCR: 1.8267]