关键词:甘蓝型油菜; 氮素积累; 落叶; 氮素运转率; 氮素利用率 Effects of Nitrogen Fertilizer on Nitrogen Accumulation, Translocation and Nitrogen Use Efficiency in Rapeseed (Brassica napus L.) ZUO Qing-Song1,2, YANG Hai-Yan1, LENG Suo-Hu2, CAO Shi1, ZENG Jiang-Xue1, WU Jiang-Sheng1, ZHOU Guang-Sheng1,* 1College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
2Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
Fund: AbstractIn this study, five conventional oilseed rape varieties with different oil contents, including Yangyou 6 (YY6), Suyou 211(SY211), Ningyou 20 (NY20), Zhongshuang 11 (ZS11), and Zheyou 50 (ZY50) were grown under three N (nitrogen) fertilizer levels: 120 (N1), 240 (N2), and 360 kg N ha-1 (N3) from 2010 to 2012. The effects of N application on N accumulation, N translocation rate and N use efficiency were studied through plant sampling, picking deciduous leaf and measuring dry matter weight, N content and oil content. The results showed that with increasing N application rates yield and total N amount in whole plant increased, and N harvest index (NHI) and N use efficiency for grain production (NUEg) decreased. The N translocation rate in leaf ranged from 76.6% to 80.2%, and there were no significant differences among different N fertilizer levels. The nitrogen translocation rate in stem ranged from 36.0% to 57.6%, and decreased with increasing N application rates. The N proportion of deciduous leaf to whole plant ranged from 14.9% to 20.3%, and increased with increasing N application rates. The N proportion of the beginning of flowering stage to ripening stage was from 75.5% to 90.5%, and increased with increasing N application rates. The effect of N amount at the beginning of flowering stage on yield is significant. N application at earlier stage promotes flower bud differentiation and increases effective pods, resulting in higher yield.
Keyword:Rapeseed (Brassica napus L.); N accumulation; Deciduous leaf; N translocation rate; N use efficiency Show Figures Show Figures
2 结果与分析2.1 不同氮肥水平下油菜产量和油含量差异如表2所示, 5个品种中宁油20产量平均值最 高, 为3052 kg hm-2, 浙油50最低, 为2789 kg hm-2, 宁油20与浙油50相比产量平均值增加9.4%。5个品种中浙油50油含量平均值最高, 为47.6%, 扬油6号最低, 为42.3%, 浙油50比扬油6号增加12.4%。随着氮肥用量增加, 产量增加, 油含量降低。方差分析(表3)表明, 氮肥、品种以及氮肥和品种的互作对产量和油含量的影响都达到显著或极显著水平。 2.2 不同氮肥水平下油菜氮素积累总量及损失率差异表4显示不同处理油菜落叶氮素积累总量(包括花前和花后落叶)的变化范围在22.8~65.1 kg hm-2之 表2 Table 2 表2(Table 2)
表2 不同处理条件下产量和油含量差异 Table 2 Differences of yield and oil content under different treatments
性状 Trait
品种 Variety
2011
2012
N1
N2
N3
N1
N2
N3
产量 Yield (kg hm-2)
扬油6号 YY6
2348±32 c
2907±40 b
3394±35 a
2390±25 c
2991±36 b
3370±27 a
苏油211 SY211
2479±49 c
3096±23 b
3476±10 a
2499±29 c
3102±22 b
3485±87 a
宁油20 NY20
2499±60 c
3110±14 b
3533±30 a
2507±23 c
3141±20 b
3522±64 a
中双11 ZS11
2403±23 c
2991±43 b
3292±19 a
2496±38 c
3056±34 b
3273±26 a
浙油50 ZY50
2283±12 c
2863±39 b
3137±40 a
2488±34 c
2849±45 b
3115±19 a
油含量 Oil content in seed (%)
扬油6号 YY6
43.6±0.2 a
42.3±0.2 b
41.4±0.2 c
43.3±0.3 a
42.2±0.2 b
41.2±0.2 c
苏油211 SY211
44.3±0.1 a
43.0±0.2 b
42.3±0.1 c
44.4±0.1 a
43.0±0.4 b
42.3±0.1 b
宁油20 NY20
46.3±0.1 a
45.1±0.3 b
44.3±0.1 c
46.1±0.2 a
45.0±0.3 b
44.5±0.1 b
中双11 ZS11
47.8±0.1 a
46.9±0.2 b
46.2±0.2 c
47.6±0.4 a
46.9±0.3 ab
46.2±0.0 b
浙油50 ZY50
48.7±0.3 a
47.6±0.3 b
46.5±0.1 c
48.7±0.4 a
47.5±0.4 b
46.6±0.2 c
表中数值后不同字母表示差异达0.05显著水平。 Values followed by different letters are significantly different at P<0.05.
表2 不同处理条件下产量和油含量差异 Table 2 Differences of yield and oil content under different treatments
表3 Table 3 表3(Table 3)
表3 不同处理条件下主要性状的方差分析 Table 3 Variance analyses of main traits under different treatments
项目 Item
年份 Year
氮肥 Nitrogen
品种 Variety
年份×氮肥 Year × nitrogen
年份×品种 Year × variety
氮肥×品种 Nitrogen × variety
年份×氮肥×品种 Year × nitrogen × variety
产量 Yield
NS
**
**
**
NS
**
**
油含量Oil content
NS
**
**
NS
NS
*
NS
叶片运转率 N translocation rate of leaf
NS
NS
**
NS
NS
*
NS
茎枝氮素运转率 N translocation rate of stem
NS
**
**
NS
NS
**
NS
落叶氮素积累总量 TNADL
*
**
**
NS
NS
**
**
植株氮素积累总量 Total N amount in whole plant
*
**
**
NS
NS
**
**
落叶氮占植株氮比例NPDLWP
NS
**
**
NS
NS
NS
*
初花期积累氮占植株总氮比例NPBFSRS
NS
**
**
*
**
**
**
收获指数Harvest index
NS
**
**
**
*
**
NS
氮收获指数N harvest index
NS
**
**
NS
*
**
NS
氮素利用效率N use efficiency for grain
**
**
**
NS
NS
**
NS
NS: 不显著; *,**: 在0.05和0.01的水平差异显著。 NS: not significant; * and **: significant difference at 0.05 and 0.01 probability levels, respectively. TNADL: total nitrogen amount in deciduous leaf; NPDLWP: N proportion of deciduous leaf to whole plant; NPBFSRS: N proportion of the beginning of flowering stage to ripening stage.
表3 不同处理条件下主要性状的方差分析 Table 3 Variance analyses of main traits under different treatments
表4 Table 4 表4(Table 4)
表4 不同处理条件下氮素积累总量和氮素损失率差异 Table 4 Differences of total amount of N accumulation and loss rate of nitrogen under different treatments
项目 Item
品种 Variety
2011
2012
N1
N2
N3
N1
N2
N3
落叶氮素积累总量 Total N accumulation in deciduous leaf (kg hm-2)
扬油6号 YY6
26.3±0.7 c
41.9±0.8 b
65.1±0.8 a
25.7±0.7 c
44.6±1.0 b
65.0±1.4 a
苏油211 SY211
27.0±0.2 c
41.9±0.9 b
63.4±0.9 a
28.2±0.7 c
44.3±0.5 b
64.8±1.3 a
宁油20 NY20
22.8±0.9 c
36.8±0.6 b
52.8±1.4 a
23.9±0.6 c
37.1±1.2 b
56.6±2.4 a
中双11 ZS11
25.3±1.0 c
39.6±0.5 b
54.5±1.0 a
26.5±1.1 c
41.0±0.6 b
54.4±0.7 a
浙油50 ZY50
22.7±1.1 c
38.5±0.7 b
53.0±1.4 a
25.5±0.8 c
36.5±0.9 b
54.5±0.1 a
植株氮素积累总量 Total N accumulation in whole plant (kg hm-2)
扬油6号YY6
161.0±2.7 c
235.2±1.4 b
320.7±1.9 a
162.9±3.0 c
245.7±2.9 b
320.5±4.1 a
苏油211 SY211
169.4±2.2 c
242.6±3.1 b
325.7±3.1 a
172.7±2.5 c
245.4±1.9 b
332.9±4.1 a
宁油20 NY20
153.6±1.1 c
218.4±1.8 b
292.6±1.9 a
158.3±2.0 c
224.2±3.9 b
301.0±4.0 a
中双11 ZS11
164.4±2.4 c
232.3±0.8 b
295.0±2.5 a
172.3±1.6 c
242.6±3.3 b
299.7±2.2 a
浙油50 ZY50
143.4±1.7 c
212.6±2.6 b
273.2±3.4 a
158.9±2.0 c
212.8±1.5 b
276.9±2.9 a
落叶氮占植株氮比例 N proportion of deciduous leaf to whole plant (%)
扬油6号 YY6
16.4±0.3 c
17.8±0.4 b
20.3±0.2 a
15.8±0.2 c
18.1±0.6 b
20.3±0.2 a
苏油211 SY211
15.9±0.1 c
17.3±0.4 b
19.5±0.1 a
16.3±0.2 c
18.1±0.3 b
19.5±0.2 a
宁油20 NY20
14.9±0.6 b
16.8±0.3 a
18.0±0.5 a
15.1±0.2 b
16.6±0.5 b
18.8±0.7 a
中双11 ZS11
15.4±0.5 c
17.1±0.1 b
18.5±0.3 a
15.4±0.7 b
16.9±0.1 a
18.2±0.2 a
浙油50 ZY50
15.8±0.6 b
18.1±0.5 a
19.4±0.3 a
16.1±0.5 c
17.1±0.3 b
19.7±0.2 a
表中数值后不同字母表示差异达0.05显著水平。 Values followed by different letters are significantly different at P<0.05.
表4 不同处理条件下氮素积累总量和氮素损失率差异 Table 4 Differences of total amount of N accumulation and loss rate of nitrogen under different treatments
间, 其中苏油211不同处理落叶氮素积累总量平均值最高, 为44.9 kg hm-2, 比宁油20增加17.16%。植株氮素积累总量(包括落叶)的变化范围为143.4~332.9 kg hm-2, 其中苏油211平均值也是最高, 为248.1 kg hm-2, 比最低的浙油50 (213.1 kg hm-2)增加16.5%。随着氮肥水平增加, 落叶和植株氮素积累总量都增加, 其中落叶氮素积累总量增加幅度更大(N2、N3处理与N1处理相比落叶氮素总量平均增加58.4%和129.9%, 植株为43.0%和87.9%), 所以落叶氮占植株氮比例随着氮肥用量的增加而增加。 2.3 不同氮肥水平下油菜叶片和茎枝氮素运转率差异表5的结果显示不同品种不同氮肥处理初花期叶片氮素积累量的变化范围在52.2~150.4 kg hm-2之间, 花后落叶氮素积累量的变化范围在11.2~32.9 kg hm-2之间。随着氮肥用量增加两者都增加, 处理N2、N3与N1相比初花期叶片氮素积累量平均增加64.2%和134.8%, 花后落叶氮素积累量增加60.9%和128.1%。叶片运转率扬油6号最小, 不同处理平均值为77.1%, 浙油50最大, 平均值为79.5%。不同氮肥处理间叶片氮素运转率差异不显著。方差分析(表3)表明除了品种以及氮肥与品种互作对叶片氮素运转率有显著影响外, 其余因素对其影响均未达到显著差异水平。 不同品种不同氮肥处理初花期茎枝氮素积累量的变化范围在42.3~108.3 kg hm-2之间, 成熟期茎枝氮素积累量的变化范围在22.8~62.9 kg hm-2之间。随着氮肥用量两者都增加, 两年试验中处理N2、N3与N1相比初花期茎枝氮素积累量平均增加44.41%和92.5%, 成熟期茎枝氮素积累量增加相对较大, 为55.1%和136.9%。方差分析(表3)表明氮肥和品种及其互作对茎枝氮素运转率有显著影响, 而年份以及年份与其他因素的互作对茎枝氮素运转率无显著影响。不同处理茎枝氮素运转率变化范围为36.0%~57.6% (表5), 茎枝氮素运转率平均值随着氮肥用量增加逐渐下降, 不同年份和品种受氮肥影响程度不同。 2.4 不同氮素水平下油菜收获指数和氮素利用率差异表6显示不同处理收获指数的变幅为0.216~ 0.243, 氮素收获指数的变幅为0.451~0.582, 氮素籽粒生产效率的变幅为10.47~16.28 g g-1。不同品种收获指数和氮素收获指数差异相对较小, 而氮素籽粒生产效率差异较大, 其中宁油20不同处理氮素籽粒生产效率最高, 平均值为14.0 g g-1, 与最低的扬油6号相比(平均值为12.5 g g-1)增加12.4%。不同品种收获指数N1和N2处理间无显著差异, N2处理都显著高于N3处理。随着氮肥用量增加, 氮素收获指数 表5 Table 5 表5(Table 5)
表5 不同处理条件下叶片和茎枝氮素运转率差异 Table 5 Differences of N translocation rate of leaf and stem under different treatments
项目 Item
品种 Variety
2011
2012
N1
N2
N3
N1
N2
N3
初花期叶片氮素积累量 N accumulation in leaf at the beginning of flowering stage (kg hm-2)
扬油6号 YY6
58.9±0.6 c
95.1±2.3 b
138.5±2.3 a
57.1±2.0 c
100.5±2.7 b
138.6±3.1 a
苏油211 SY211
61.6±1.1 c
101.1±1.7 b
148.4±3.3 a
61.0±0.9 c
104.4±1.6 b
150.4±2.4 a
宁油20 NY20
53.2±0.5 c
84.2±2.0 b
126.2±1.8 a
55.0±0.7 c
86.3±2.2 b
132.5±2.3 a
中双11 ZS11
57.9±0.7 c
93.8±2.3 b
130.4±2.6 a
60.9±0.8 c
98.5±2.4 b
129.5±2.2 a
浙油50 ZY50
52.2±1.1 c
92.4±1.2 b
128.2±0.2 a
58.2±2.1 c
90.1±1.7 b
129.3±1.0 a
花后落叶氮素积累量 N accumulation in deciduous leaf after the beginning of flowering stage (kg hm-2)
扬油6号 YY6
13.5±0.3 c
21.6±0.7 b
32.4±0.6 a
13.0±0.3 c
22.9±0.4 b
31.2±0.8 a
苏油211 SY211
13.4±0.4 c
21.3±0.9 b
32.1±0.3 a
14.1±0.2 c
23.3±0.3 b
32.9±0.8 a
宁油20 NY20
11.4±0.5 c
18.8±0.7 b
26.5±1.0 a
11.5±0.3 c
18.6±0.4 b
28.0±1.5 a
中双11 ZS11
12.8±0.3 c
20.2±0.2 b
27.4±0.3 a
13.5±0.7 c
21.3±0.8 b
27.7±0.4 a
浙油50 ZY50
11.2±0.7 c
18.5±0.8 b
25.3±1.0 a
12.6±0.7 c
17.9±0.4 b
25.9±0.8 a
叶片运转率 N translocation rate of leaf (%)
扬油6号 YY6
77.0±0.6 a
77.2±1.1 a
76.6±0.5 a
77.2±0.8 a
77.2±0.7 a
77.5±0.4 a
苏油211 SY211
78.3±0.9 a
79.0±0.6 a
78.4±0.4 a
76.9±0.4 a
77.7±0.6 a
78.1±0.8 a
宁油20 NY20
78.6±1.2 a
77.6±1.1 a
79.0±0.7 a
79.1±0.8 a
78.4±0.1 a
78.9±1.1 a
中双11 ZS11
77.9±0.6 a
78.5±0.7 a
79.0±0.2 a
77.8±1.1 a
78.4±0.5 a
78.6±0.2 a
浙油50 ZY50
78.6±1.0 a
80.0±1.1 a
80.2±0.7 a
78.4±1.5 a
80.1±0.3 a
80.0±0.5 a
初花期茎氮素积累量 N accumulation in stem at the beginning of flowering stage (kg hm-2)
扬油6号 YY6
49.5±1.0 c
78.2±1.2 b
108.3±1.1 a
48.8±1.3 c
82.9±1.9 b
107.8±1.1 a
苏油211 SY211
55.8±2.5 c
75.4±1.7 b
103.9±2.7 a
59.0±0.9 c
74.7±1.2 b
105.2±2.0 a
宁油20 NY20
53.7±1.3 c
72.7±1.7 b
96.8±1.7 a
54.5±2.1 c
73.3±2.6 b
98.1±3.1 a
中双11 ZS11
54.9±2.1 c
78.4±0.6 b
99.2±1.4 a
56.1±2.3 c
84.3±2.2 b
104.1±3.1 a
浙油50 ZY50
42.3±0.3 c
65.0±2.0 b
85.7±1.3 a
44.8±0.2 c
62.1±0.8 b
86.2±2.3 a
成熟期茎氮积累量 N accumulation in stem at ripening stage (kg hm-2)
扬油6号 YY6
24.1±0.9 c
38.7±0.5 b
59.3±0.8 a
24.2±0.8 c
41.1±0.4 b
59.4±0.8 a
苏油211 SY211
23.9±1.4 c
37.1±0.6 b
60.0±1.8 a
25.0±1.0 c
37.1±1.2 b
62.9±0.8 a
宁油20 NY20
24.6±0.2 c
36.3±0.5 b
56.3±2.3 a
24.9±0.3 c
35.9±1.2 b
58.6±1.4 a
中双11 ZS11
26.9±0.5 c
41.1±0.4 b
60.1±1.4 a
27.4±0.9 c
41.7±0.2 b
62.4±2.7 a
浙油50 ZY50
22.8±0.2 c
38.3±1.5 b
54.8±0.7 a
24.7±0.5 c
37.9±0.9 b
54.3±0.9 a
茎枝氮素运转率 N translocation rate of stem (%)
扬油6号 YY6
51.2±0.9 a
50.5±1.3 a
45.2±1.3 b
50.6±0.6 a
50.4±1.5 a
44.9±0.8 b
苏油211 SY211
57.2±1.1 a
50.8±0.4 b
42.3±1.3 c
57.6±1.2 a
50.3±0.8 b
40.2±1.8 c
宁油20 NY20
54.1±1.5 a
50.0±1.6 a
41.9±1.4 b
54.3±1.4 a
51.1±1.1 b
40.2±0.4 c
中双11 ZS11
50.9±1.5 a
47.6±0.9 a
39.4±1.0 b
51.2±2.0 a
50.5±1.1 a
40.1±1.0 b
浙油50 ZY50
46.1±0.9 a
41.0±1.5 b
36.0±1.8 b
44.9±0.9 a
39.0±1.7 b
36.9±1.3 b
表中数值后不同字母表示差异达0.05显著水平。 Values followed by different letters are significantly different at P<0.05.
表5 不同处理条件下叶片和茎枝氮素运转率差异 Table 5 Differences of N translocation rate of leaf and stem under different treatments
表6 不同处理条件下收获指数、氮素收获指数和氮素利用效率差异 Table 6 Differences of harvest index, N harvest index, and N use efficiency under different treatments
项目 Item
品种 Variety
2011
2012
N1
N2
N3
N1
N2
N3
收获指数 Harvest index
扬油6号 YY6
0.230±0.002 a
0.228±0.004 a
0.218±0.001 b
0.236±0.002 a
0.231±0.003 a
0.218±0.002 b
苏油211 SY211
0.228±0.005 ab
0.233±0.002 a
0.220±0.002 b
0.228±0.002 a
0.230±0.002 a
0.219±0.004 b
宁油20 NY20
0.242±0.001 a
0.241±0.001 a
0.234±0.002 b
0.240±0.001 a
0.243±0.003 a
0.226±0.004 b
中双11 ZS11
0.236±0.003 a
0.238±0.002 a
0.227±0.002 b
0.239±0.005 a
0.239±0.002 a
0.225±0.002 b
浙油50 ZY50
0.237±0.001 a
0.234±0.001 a
0.217±0.002 b
0.239±0.001 a
0.237±0.002 a
0.216±0.001 b
氮素收获指数 N harvest index
扬油6号 YY6
0.578±0.003 a
0.532±0.008 b
0.476±0.003 c
0.582±0.003 a
0.521±0.007 b
0.475±0.006 c
苏油211 SY211
0.579±0.008 a
0.538±0.008 b
0.470±0.007 c
0.569±0.008 a
0.535±0.002 b
0.463±0.003 c
宁油20 NY20
0.561±0.008 a
0.528±0.007 b
0.477±0.007 c
0.564±0.004 a
0.542±0.007 a
0.465±0.009 b
中双11 ZS11
0.548±0.008 a
0.514±0.005 b
0.469±0.007 c
0.550±0.008 a
0.519±0.005 b
0.467±0.006 c
浙油50 ZY50
0.557±0.009 a
0.507±0.005 b
0.451±0.003 c
0.561±0.005 a
0.513±0.003 b
0.453±0.004 c
氮素利用效率 NUEg (g g-1)
扬油6号 YY6
14.6±0.4 a
12.4±0.2 b
10.6±0.1 c
14.7±0.4 a
12.2±0.1 b
10.5±0.1 c
苏油211 SY211
14.6±0.1 a
12.8±0.1 b
10.7±0.1 c
14.5±0.3 a
12.6±0.2 b
10.5±0.1 c
宁油20 NY20
16.3±0.1 a
14.2±0.1 b
12.1±0.1 c
15.8±0.3 a
14.0±0.2 b
11.7±0.1 c
中双11 ZS11
14.6±0.3 a
12.9±0.2 b
11.2±0.2 c
14.5±0.1 a
12.6±0.1 b
10.9±0.1 c
浙油50 ZY50
15.9±0.1 a
13.5±0.2 b
11.5±0.1 c
15.7±0.3 a
13.4±0.1 b
11.3±0.1 c
表中数值后不同字母表示差异达0.05显著水平。 Values followed by different letters are significantly different at P<0.05.
表6 不同处理条件下收获指数、氮素收获指数和氮素利用效率差异 Table 6 Differences of harvest index, N harvest index, and N use efficiency under different treatments
表7 Table 7 表7(Table 7)
表7 不同处理条件下初花期积累氮素占植株总氮量比例差异 Table 7 Differences of N proportion of the beginning of flowering stage to ripening stage in whole plant under different treatments (%)
品种 Variety
2011
2012
N1
N2
N3
N1
N2
N3
扬油6号 YY6
77.9±1.0 c
84.5±0.3 b
89.1±0.5 a
75.5±0.8 c
85.6±0.3 b
89.4±0.3 a
苏油211 SY211
79.7±0.4 c
83.3±0.2 b
88.8±0.5 a
80.0±1.1 c
83.6±0.2 b
88.1±0.3 a
宁油20 NY20
79.8±0.4 c
82.4±0.3 b
87.2±0.9 a
79.8±0.3 c
81.8±0.2 b
88.0±0.8 a
中双11 ZS11
79.1±0.2 c
84.7±0.9 b
89.1±0.2 a
78.2±0.7 c
85.6±0.4 b
89.0±0.5 a
浙油50 ZY50
76.8±0.9 c
85.8±0.8 b
90.5±0.4 a
75.5±0.6 c
82.6±1.0 b
90.2±0.3 a
表中数值后不同字母表示差异达0.05显著水平。 Values followed by different letters are significantly different at P<0.05.
表7 不同处理条件下初花期积累氮素占植株总氮量比例差异 Table 7 Differences of N proportion of the beginning of flowering stage to ripening stage in whole plant under different treatments (%)
4 结论随着氮肥用量增加, 不同品种产量、成熟期氮素积累总量、落叶氮素损失量增加, 落叶氮占成熟期氮素积累总量比例逐渐增加。油菜在初花前吸收的氮素比例较大, 随着氮肥用量的增加, 初花期氮素积累量占成熟期氮素积累总量的比例逐渐增加。施氮水平对叶片氮素运转率的影响较小, 未达显著差异水平; 随着氮肥用量增加, 成熟期茎枝中滞留的氮素相对更多, 即茎枝氮素运转率逐渐降低。不同品种收获指数和氮素收获指数差异相对较小, 氮素籽粒生产效率差异较大。随着氮肥用量增加, 氮素收获指数和氮素籽粒生产效率逐渐降低。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
王汉中. 我国油菜产需形势分析及产业发展对策. , 2007, 29: 101-105WangH Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. , 2007, 29: 101-105 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[2]
冷锁虎, 单玉华, 周宝梅. 氮素营养对油菜成熟期生物产量的调控. , 2000, 22(2): 53-56LengS H, ShanY H, ZhouB M. Regulation of N nutrition to biomass of oilseed in ripening stage. , 2000, 22(2): 53-56 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[3]
AsareE, ScarisbrickD H. Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (Brassica napus L. ). , 1995, 44: 41-46[本文引用:1][JCR: 2.474]
[4]
DreccerM F, Schapendonk A H C M, SlaferG A, RabbingeR. Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. , 2000, 220: 189-205[本文引用:1][JCR: 2.638]
[5]
RathkeG W, ChristenO, DiepenbrockW. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L. ) grown in different crop rotations. , 2005, 94: 103-113[本文引用:1][JCR: 2.474]
[6]
冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. , 1992, 18: 250-257LengS H, ZhuG R, DengX L. Studies on the sources of the dry matter in the seed of rapeseed. , 1992, 18: 250-257 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[7]
胡会庆, 刘安国, 王维金. 油菜光合速率日变化的初步研究. , 1998, 17: 430-433HuH Q, LiuA G, WangW J. Study on daily change and midday depression of photosynthetic rate in rape leaves under field condition. , 1998, 17: 430-433 (in Chinese with English abstract)[本文引用:1][CJCR: 0.849]
[8]
时向东, 时映, 王瑞宝, 戴吉林, 夏开宝, 张庆刚. 稳定氮同位素示踪技术在烟草研究中的应用. , 2008, 14(1): 51-57ShiX D, ShiY, WangR B, DaiJ L, XiaK B, ZhangQ G. Applications of stable nitrogen isotope on tobacco research. , 2008, 14(1): 51-57 (in Chinese with English abstract)[本文引用:1]
[9]
魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. , 2008, 34: 119-125WeiH Y, ZhangH C, HangJ, DaiQ G, HuoZ Y, XuK, ZhangS F, MaQ, ZhangQ, ZhangJ. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. , 2008, 34: 119-125 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[10]
郑成岩, 于振文, 王西芝, 武同华. 灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响. , 2009, 15: 1324-1332ZhengC Y, YuZ W, WangX Z, WuT H. Effects of irrigation amount and stage on nitrogen accumulation, distribution, translocation and soil NO3--N content in high-yield wheat. , 2009, 15: 1324-1332 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[11]
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp30-107BaoS D. Soil Agricultural-Chemical Analysis. Beijing: China Agriculture Press, 2000. pp30-107(in Chinese)[本文引用:1]
[12]
单玉华, 王余龙, 山本由德, 黄建晔, 杨连新, 张传胜. 不同类型水稻在氮素吸收及利用上的差异. ), 2001, 4(3): 42-46ShanY H, WangY L, YamamotoY, HuangJ Y, YangL X, ZhangC S. Study on the differences of nitrogen uptake and use efficiency in different types of rice. ), 2001, 4(3): 42-46 (in Chinese with English abstract)[本文引用:1]
[13]
RathkeG W, BehrensT, DiepenbrockW. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L. ): a review. , 2006, 117: 80-108[本文引用:1][JCR: 2.859]
[14]
宁堂原, 焦念元, 张民, 郑延海, 赵春, 安艳艳, 李增嘉. 不同品种组合下春夏玉米套作的氮素利用特征研究. , 2007, 33: 1896-1901NingT Y, JiaoN Y, ZhangM, ZhengY H, ZhaoC, AnY Y, LiZ J. Nitrogen use characteristic in maize relay-cropping system of different cultivars. , 2007, 33(11): 1896-1901 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[15]
JanakiP, RajaR A, VadivelA. Effect of different levels of nitrogen and phosphorus on nitrogen use efficiency in cotton. , 2008, 21: 513-516[本文引用:1]
[16]
NouriyaniH, MajidiE, SeyyednejadS M, SiadatS A, NaderiA. Evaluation of nitrogen use efficiency of wheat (Triticum aestivum L. ) as affected by nitrogen fertilizer and different levels of paclobutrazol. , 2012, 13: 439-445[本文引用:1][JCR: 2.474]
[17]
曹仁林, 贾晓葵. 我国集约化农业中氮污染问题及防治对策. , 2001, (3): 3-6CaoR L, JiaX K. The problems and control countermeasures of nitrogen pollution in agriculture of China. , 2001, (3): 3-6 (in Chinese with English abstract)[本文引用:1]
[18]
张维理, 田哲旭, 张宁, 李晓齐. 我国北方农用氮肥造成地下水硝酸盐污染的调查. , 1995, 1: 80-87ZhangW L, TianZ X, ZhangN, LiX Q. Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in North China. , 1995, 1: 80-87 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[19]
江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. , 2004, 37: 490-496JiangL G, CaoW X, GanX Q, WeiS Q, XuJ Y, DongD F, ChenN P, LuF Y, QinH D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. , 2004, 37: 490-496 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[20]
卢艳丽, 陆卫平, 王继丰, 刘萍, 刘小兵, 陆大雷, 苏辉. 不同基因型糯玉米氮素吸收利用效率的研究: I. 氮素吸收利用的基因型差异. , 2006, 12: 321-326LuY L, LuW P, WangJ F, LiuP, LiuX B, LuD L, SuH. The differences of nitrogen uptake and utilization in waxy corn: I. The difference genotypes in absorption and utilization of nitrogen. , 2006, 12: 321-326 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]