摘要研究西南地区玉米主要2种套作模式下氮素吸收利用差异及氮肥调控效应, 为氮素高效利用提供科学依据。在四川2个玉米主产区, 通过连续4年的大田试验, 对比研究了玉/豆和玉/薯模式下玉米氮素吸收利用差异和不同供氮水平对玉米氮素吸收的调控效应。结果表明, 玉/豆模式下玉米收获期植株中的氮素积累2个试验点平均较玉/薯模式增加7.11%, 氮收获指数增加2.00%左右, 氮素吸收效率增加7.83%, 成熟期籽粒中氮素的分配比例增加1.76%, 而叶、茎鞘中氮素的分配比例分别减少5.85%和2.75%。分带轮作后, 由于不同前茬对土壤养分影响不同, 再加上套作优势, 玉/豆模式下玉米在生长前期就表现出明显的优势, 到收获期植株氮素积累2个试验点平均较玉/薯增加11.85%, 氮素吸收效率增加11.84%。在玉米氮素积累关键时期, 玉/豆模式在低氮处理下玉米植株氮素的积累量显著高于玉/薯模式相同施氮处理, 而在高氮处理下2种模式间差异不大或者表现相反, 氮肥偏生产力、氮素农艺效率和氮肥利用率也有相似的结果; 玉/豆模式在180 kg hm-2施氮量下较其他处理显著提高了玉米氮素农学利用率、氮素吸收利用率和籽粒中氮素的分配量, 玉/薯模式下玉米氮素农学利用率和氮肥利用效率, 在180~270 kg hm-2施氮量处理下较高; 花后氮素同化量玉/豆模式显著高于玉/薯; 2种模式均以施纯氮180~270 kg hm-2处理有利于氮素转运和花后氮素同化量积累。
关键词:玉/豆(薯)套作; 玉米; 施氮量; 氮素利用率 Differences of Nitrogen Uptake and Utilization and Nitrogen Regulation Effects in Maize between Maize/Soybean and Maize/Sweet Potato Relay Intercropping Systems WANG Xiao-Chun1, YANG Wen-Yu1,*, DENG Xiao-Yan1, ZHANG Qun1, YONG Tai-Wen1, LIU Wei-Guo1, YANG Feng1, MAO Shu-Ming2 1 Agronomy College of Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Wenjiang 611130, China
2 Renshou Bureau of Agriculture, Renshou 620500, China
Fund: AbstractThe aim of this study was to investigate the differences of maize nitrogen uptake and utilization and nitrogen regulation effects between two main intercropping systems including maize intercropped with soybean and sweet potato respectively in a four-year field experiment at two major maize producing areas of Sichuan in southwest China. Results showed that maize nitrogen accumulation (A), nitrogen harvest index (HI), nitrogen absorption efficiency (AE), and nitrogen distribution proportion to grain in maize/soybean relay strip intercropping were increased by 7.11%, 2.00%, 7.83%, and 1.76% respectively at maturity, on an average of two experimental sites, but the distribution proportion to leaves and stem/sheath decreased by 5.85% and 2.75% respectively. After strip rotation, maize intercropped with soybean showed obvious advantages even at early growing stage due to the effects of preceding crops on soil nutrients and relay intercropping advantage, with an increase of 11.85% in A and 11.84% in AE on average at maturity. During the key period of nitrogen accumulation, maize nitrogen accumulation was significantly higher when intercropped with soybean under low-nitrogen treatment than that when intercropped with sweet potato. However the results were insignificant or even opposite under high-nitrogen treatment. So did the results of nitrogen partial factor productivity (NPFP), nitrogen agronomic efficiency (NAE), and NRE. NAE, NRE and nitrogen distribution proportion to grain of maize were significantly higher in the treatment with nitrogen application of 180 kg ha-1 when intercropped with soybean, and in the treatment of 180-270 kg ha-1 when intercropped with sweet potato. After flowering stage, nitrogen assimilation amount after anthesis (AANAA) in maize/soybean was higher than that in maize/sweet potato significantly; consequently, nitrogen transfer (NT) and AANAA were higher in both intercropping systems with nitrogen application of 180-270 kg ha-1.
Keyword:Maize/soybean (sweet potato) intercropping; Maize; Nitrogen application amount; Nitrogen use efficiency Show Figures Show Figures
表1 2种模式下不同生育阶段玉米氮素积累 Table 1 N accumulation in maize at different growth stages under two intercropping systems (kg hm-2)
地点 Experiment site
处理 Treatment
四叶期 4th leaf age
拔节期Jointing stage
大喇叭口期 Spike formation stage
抽雄期Anthesis stage
灌浆期 Filling stage
蜡熟期Dough stage
收获期 Harvest stage
2008
雅安 Ya’an
玉/豆Maize/soybean
1.87 a
8.45 a
68.85 a
100.57 a
146.45 a
154.56 a
188.65 a
玉/薯Maize/sweet potato
1.92 a
7.99 a
68.23 a
101.23 a
141.32 b
148.60 b
178.84 b
射洪 Shehong
玉/豆Maize/soybean
1.56 a
7.68 a
61.12 a
97.65 a
138.65 a
152.23 a
161.59 a
玉/薯Maize/sweet potato
1.54 a
7.98 a
63.45 a
100.90 a
135.78 a
148.97 b
148.64 b
2009-2010
雅安 Ya’an
玉/豆Maize/soybean
2.11 a
14.39 a
71.39 a
104.16 a
158.46 a
183.13 a
203.02 a
玉/薯Maize/sweet potato
1.96 a
12.76 b
62.98 b
94.70 b
132.76 b
146.37 b
183.29 b
射洪 Shehong
玉/豆Maize/soybean
1.64 a
10.67 a
63.47 a
108.32 a
147.37 a
173.42 a
197.25 a
玉/薯Maize/sweet potato
1.43 a
9.42 b
60.02 b
99.65 b
126.49 b
164.01 b
174.66 b
同列数据后不同小写字母表示同主因素5%差异显著水平, 2009-2010为2009年和2010年数据的平均。 Labels of different letters in every list show 5% significant difference in different vice factors treatments. The data of 2009-2010 are the average of 2009 data and 2010 data.
表1 2种模式下不同生育阶段玉米氮素积累 Table 1 N accumulation in maize at different growth stages under two intercropping systems (kg hm-2)
表2 2种模式下成熟期玉米氮素分配和吸收利用 Table 2 Nitrogen distribution to different organs and accumulation in maize under two intercropping systems
地点 Exp. site
处理 Treatment
成熟期各器官氮素的分配 Nitrogen distribution to organs (g plant-1)
收获指数 Harvest index (%)
吸收效率 Absorption efficiency (kg kg-1)
氮素生产效率 N production efficiency (kg kg-1)
形成100 kg籽粒需要量 Nutrients required of 100 kg grain
叶 Leaf
茎鞘 Stem/sheath
籽粒 Grain
其他 Other organs
2008
雅安 Ya’an
玉/豆Maize/soybean
0.69 a
0.52 a
2.18 a
0.38 a
57.82 a
0.67 a
41.57 a
2.41 a
玉/薯Maize/sweet potato
0.67 a
0.49 a
2.01 a
0.34 b
57.26 a
0.63 b
42.82 a
2.34 b
射洪 Shehong
玉/豆Maize/soybean
0.60 a
0.41 a
1.86 a
0.34 a
57.94 a
0.57 a
44.11 b
2.27 a
玉/薯Maize/sweet potato
0.59 a
0.39 a
1.65 b
0.29 b
56.51 b
0.52 b
46.45 a
2.15 b
2009-2010
雅安 Ya’an
玉/豆Maize/soybean
0.73 a
0.53 a
2.42 a
0.41 a
59.17 a
0.72 a
38.89 a
2.57 a
玉/薯Maize/sweet potato
0.67 b
0.46 b
2.16 b
0.34 b
59.50 a
0.65 b
40.09 a
2.49 a
射洪 Shehong
玉/豆Maize/soybean
0.72 a
0.50 a
2.31 a
0.38 a
59.08 a
0.70 a
39.20 a
2.55 a
玉/薯Maize/sweet potato
0.67 b
0.44 b
1.97 b
0.30 b
58.28 b
0.62 b
38.70 b
2.58 a
同列数据后不同小写字母表示同主因素5%差异显著水平, 2009-2010为2009年和2010年数据的平均。 Labels of different letters in every list show 5% significant difference in different vice factors treatments. The data of 2009-2010 are the average of 2009 data and 2010 data.
表2 2种模式下成熟期玉米氮素分配和吸收利用 Table 2 Nitrogen distribution to different organs and accumulation in maize under two intercropping systems
表3 种植模式和施氮量对玉米各生育时期氮素积累的影响(四川雅安, 2011年) Table 3 Effect of intercropping systems and nitrogen rate on N uptake of maize at different growth stages in Ya’an (2011)
施肥量 Nitrogen rate
各生育时期氮累积量 N accumulation at different stages (kg hm-2)
四叶期 4th leaf age
拔节期 Jointing stage
大喇叭口期 Spike formation stage
抽雄期 Anthesis stage
灌浆期 Filling stage
蜡熟期 Dough stage
成熟期 Harvest stage
玉/豆Maize/soybean
N0
1.99 a
17.31 b
67.33 b
90.70 b
101.64 b
126.54 d
147.34 d
N90
2.15 a
19.29 a
93.51 a
122.80 a
135.12 a
154.76 c
176.35 c
N180
2.19 a
19.04 a
88.03 a
134.05 a
143.28 a
185.78 a
231.37 a
N270
2.12 a
18.22 ab
85.97 a
135.83 a
143.34 a
177.12 ab
225.90 ab
N360
2.11 a
17.53 b
70.18 b
130.73 a
140.02 a
163.92 bc
217.60 b
平均Average
2.11 a
18.28 a
81.01 a
122.82 a
132.68 a
161.62 a
199.71 a
玉/薯Maize/sweet potato
N0
1.66 a
15.22 b
60.52 b
75.13 d
85.89 c
119.31 b
127.58 d
N90
1.99 a
17.96 a
75.38 a
102.05 c
120.74 b
130.83 b
147.85 c
N180
1.88 a
18.12 a
78.76 a
122.57 ab
138.34 a
156.09 a
191.39 b
N270
1.79 a
18.74 a
81.85 a
127.62 a
138.71 a
171.78 a
209.23 a
N360
1.76 a
18.17 a
76.74 a
108.47 bc
133.35 a
164.23 a
197.71 b
平均Average
1.82 b
17.64 a
74.65 b
107.17 b
123.41 b
148.45 b
174.75 b
施氮量均值Average of nitrogen rate
N0
1.83 a
16.26 b
63.92 c
82.91 c
93.77 c
122.92 c
137.46 c
N90
2.07 a
18.63 a
84.45 a
112.42 b
127.93 b
142.80 b
162.10 b
N180
2.03 a
18.58 a
83.39 a
128.31 a
140.81 a
170.93 a
211.38 a
N270
1.95 a
18.48 a
83.91 a
131.73 a
141.03 a
174.45 a
217.57 a
N360
1.94 a
17.85 a
73.46 b
119.60 ab
136.68 ab
164.07 a
207.66 a
F值 F-value
A
49.999**
2.159
4.407*
11.448*
78.231**
60.168**
42.951**
B
0.882
7.431**
9.103**
22.523**
41.316**
14.777**
91.091**
A×B
0.177
2.643*
2.239*
0.529
0.753
1.303
5.627*
同列数据后不同小写字母表示同主因素0.05差异显著水平,*和**分别表示在0.05和0.01水平上差异显著。A: 不同种植模式; B: 施肥量; A×B: 互作。 Labels of different letters in every list show 0.05 significant difference in different vice factors treatments.*and** denote significantly different at 0.05 and 0.01 probability levels, respectively. A: intercropping systems; B: nitrogen rate; A×B: interacion.
表3 种植模式和施氮量对玉米各生育时期氮素积累的影响(四川雅安, 2011年) Table 3 Effect of intercropping systems and nitrogen rate on N uptake of maize at different growth stages in Ya’an (2011)
表4 种植模式和施氮量对玉米各生育时期氮素积累的影响(四川射洪, 2011年) Table 4 Effect of intercropping systems and nitrogen rate on N uptake of maize at different growth stages in Shehong (2011)
施肥量 Nitrogen rate
各生育时期氮累积量 N accumulation at different stages (kg hm-2)
四叶期 4th leaf age
拔节期 Jointing stage
大喇叭口期 Spike formation stage
抽雄期 Anthesis stage
灌浆期 Filling stage
蜡熟期 Dough stage
成熟期 Harvest stage
玉/豆 Maize/soybean
N0
1.27 b
6.83 c
47.53 c
80.54 c
85.73 c
105.60 c
138.58 e
N90
1.52 a
11.43 a
68.30 a
104.26 ab
120.62 b
140.47 b
163.37 d
N180
1.57 a
12.21 a
67.39 a
114.02 a
141.33 a
163.58 a
204.31 b
N270
1.54 a
11.21 a
63.50 ab
111.21 a
149.39 a
166.26 a
217.95 a
N360
1.17 b
9.44 b
58.90 b
102.29 b
138.26 a
146.28 b
194.02 c
平均Average
1.41 a
10.22 a
61.12 a
102.46 a
127.07 a
144.44 a
183.65 a
玉/薯 Maize/sweet potato
N0
1.20 b
5.21 b
37.03 c
67.14 c
71.11 c
94.87 d
109.96 d
N90
1.50 a
9.99 a
55.93 ab
93.68 b
108.45 b
115.58 c
132.11 c
N180
1.45 a
10.92 a
59.24 a
103.45 ab
135.57 a
138.83 b
178.52 a
N270
1.49 a
11.16 a
55.70 ab
104.16 a
132.30 a
156.99 a
182.55 a
N360
1.12 b
9.69 a
50.10 bc
97.66 ab
126.37 a
143.68 ab
164.49 b
平均Average
1.35 a
9.40 b
51.60 b
93.22 b
114.76 b
129.99 b
153.52 b
施氮量均值 Average of nitrogen rate
N0
1.23 b
6.02 c
42.28 c
73.84 d
78.42 c
100.24 d
124.27 e
N90
1.51 a
10.71 ab
62.11 a
98.97 c
114.54 b
128.03 c
147.74 d
N180
1.51 a
11.56 a
63.32 a
108.73 a
138.45 a
151.21 ab
191.41 b
N270
1.51 a
11.19 a
59.60 a
107.68 ab
140.84 a
161.63 a
200.25 a
N360
1.15 b
9.56 b
54.50 b
99.97 bc
132.31 a
144.98 b
179.26 c
F值 F-value
A
0.936
10.493**
97.456**
16.531**
87.342**
42.653**
89.846**
B
6.696**
20.787**
27.737**
27.743**
69.775**
41.640**
75.369**
A×B
0.666
2.768*
0.341
1.408
0.464
1.790
1.457
同列数据后不同小写字母表示同主因素0.05差异显著水平,*和**分别表示在0.05和0.01水平上差异显著。A: 不同种植模式; B: 施肥量; A×B: 互作。 Labels of different letters in every list show 0.05 significant differences in different vice factors treatments.* and** denote significantly different at 0.05 and 0.01 probability levels, respectively. A: intercropping systems; B: nitrogen rate; A×B: interacion.
表4 种植模式和施氮量对玉米各生育时期氮素积累的影响(四川射洪, 2011年) Table 4 Effect of intercropping systems and nitrogen rate on N uptake of maize at different growth stages in Shehong (2011)
表5 种植模式和施氮量对玉米氮素利用效率及收获指数的影响(2011年) Table 5 Effect of intercropping systems and nitrogen rate on N utilization efficiency and N harvest index in maize (2011)
施肥量 Nitrogen rate
雅安 Ya’an
射洪 Shehong
氮收获指数 N harvest index (%)
氮肥偏生产力NPFP (kg kg-1)
氮肥农艺效率 NAE (kg kg-1)
氮肥利用率 NRE (%)
氮收获指数 N harvest index (%)
氮肥偏生产力 NPFP (kg kg-1)
氮肥农艺效率 NAE (kg kg-1)
氮肥利用率 NRE (%)
玉/豆 Maize/soybean
N0
58.18 a
—
—
—
61.10 a
—
—
—
N90
57.07 a
72.83 a
7.46 b
32.22 b
58.76 ab
75.86 a
12.72 ab
27.55 b
N180
54.54 b
44.23 b
11.55 a
46.68 a
58.48 ab
45.39 b
13.82 a
36.52 a
N270
53.96 b
26.38 c
4.59 c
29.10 b
57.69 b
30.00 c
8.95 b
29.40 b
N360
53.89 b
18.77 d
2.70 d
19.52 c
57.82 b
20.88 d
5.09 c
15.40 c
平均Average
55.53 a
40.55 a
6.57 a
31.88 a
58.77 a
43.03 a
10.15 a
27.22 a
玉/薯 Maize/sweet potato
N0
58.15 a
—
—
—
60.33 a
—
—
—
N90
54.85 b
62.99 a
6.13 b
22.52 bc
58.61 ab
62.27 a
7.38 c
24.61 b
N180
54.17 b
36.82 b
7.83 a
35.45 a
57.27 ab
40.87 b
13.43 a
38.09 a
N270
51.39 c
25.15 c
7.31 a
30.24 ab
56.52 b
28.12 c
9.82 ab
26.89 ab
N360
51.17 c
18.11 d
3.89 c
19.48 c
56.87 b
18.49 d
4.77 d
15.15 c
平均Average
53.95 b
35.77 b
6.29 a
26.92 b
57.92 a
37.44 b
8.85 b
26.18 a
施氮量均值 Average of nitrogen rate
N0
58.17 a
—
—
—
60.72 a
—
—
—
N90
55.96 b
67.91 a
6.79 b
27.37 b
58.69 ab
69.06 a
10.05 b
26.08 b
N180
54.36 b
40.53 b
9.69 a
41.07 a
57.87 b
43.13 b
13.62 a
37.30 a
N270
52.68 c
25.77 c
5.95 b
29.67 b
57.11 b
29.06 c
9.39 bc
28.14 b
N360
52.53 c
18.44 d
3.30 c
19.50 c
57.35 b
19.69 d
4.93 c
15.28 c
F值 F-value
A
3.663*
65.538**
33.806**
6.558*
4.356
91.247**
1.264
1.338
B
4.171*
39.389**
36.627**
12.989**
3.035*
34.232**
35.897**
26.224**
A×B
3.623*
7.259**
4.144*
3.685*
1.066
2.199**
5.971**
1.352
NPFP: 氮肥偏生产力; NAE: 氮肥农艺效率; NRE: 氮肥利用率; 同列数据后不同小写字母表示同主因素5%差异显著水平。*和**分别表示在0.05和0.01水平上差异显著。A: 不同种植模式; B: 施肥量; A×B: 互作。 NPFP: nitrogen partial factor productivity; NAE: nitrogen agronomic efficiency; NRE: nitrogen recovery efficiency. Labels of different letters in every list show 5% significant difference in different vice factors treatments.* and** denote significantly different at 0.05 and 0.01 probability levels, respectively. A: intercropping systems; B: nitrogen rate; A×B: interacion.
表5 种植模式和施氮量对玉米氮素利用效率及收获指数的影响(2011年) Table 5 Effect of intercropping systems and nitrogen rate on N utilization efficiency and N harvest index in maize (2011)
表6 种植模式和施氮量对玉米叶片和茎鞘氮素运移及籽粒贡献的影响(四川雅安, 2011年) Table 6 Effects of intercropping systems and nitrogen rate on nitrogen transport from maize leaves, stem-sheathes to grains, and contribution to the grains in Ya’an (2011)
施肥量 Nitrogen rate
叶片Leaf
茎鞘Steam-sheath
花后氮素同化量 AANAA (kg hm-2)
氮素转运对籽粒的贡献率 NCP (%)
氮转运量 NT (kg hm-2)
氮转运率 NTE (%)
氮转运量 NT (kg hm-2)
氮转运率 NTE (%)
玉/豆 Maize/soybean
N0
19.96 c
43.30 a
17.28 c
46.10 ab
42.56 d
49.53 c
N90
24.80 b
43.07 a
21.19 b
42.50 b
47.06 c
53.32 b
N180
30.41 ab
38.30 b
28.47 a
48.80 a
60.60 a
52.55 b
N270
32.09 a
38.75 b
29.56 a
47.27 a
55.50 b
55.48 a
N360
30.94 ab
38.90 b
23.28 b
41.43 b
51.79 bc
47.29 c
平均Average
27.64 a
40.46 b
23.96 b
45.23 b
51.50 a
51.63 b
玉/薯 Maize/sweet potato
N0
23.76 b
52.89 a
21.89 c
51.27 a
33.12 c
55.25 b
N90
24.12 b
47.19 b
28.88 b
54.03 a
37.69 bc
54.55 b
N180
30.09 a
40.58 c
35.31 a
52.12 a
39.97 b
61.75 a
N270
30.41 a
39.52 c
34.30 a
51.59 a
49.94 a
56.77 b
N360
30.17 a
40.57 c
24.50 c
39.12 b
47.62 ab
51.88 c
平均Average
27.71 a
44.15 a
28.98 a
49.63 a
41.67 b
56.04 a
施氮量均值 Average of nitrogen rate
N0
21.86 c
48.09 a
19.58 c
48.68 ab
37.84 d
52.39 ab
N90
24.46 b
45.13 ab
25.04 b
48.27 ab
42.38 c
53.93 ab
N180
30.25 a
39.43 b
31.89 a
50.46 a
50.28 ab
57.15 a
N270
31.25 a
39.14 b
31.93 a
49.43 a
52.72 a
56.13 a
N360
30.56 a
39.73 b
23.89 b
40.28 b
49.70 ab
49.59 b
F值 F-value
A
0.689
4.219*
3.178*
4.013*
27.475**
6.557*
B
5.627**
9.555**
17.581**
4.657**
40.354**
3.406*
A×B
1.073
0.346
1.294
1.099
12.651**
2.328
NT: 氮转运量, NTE: 氮转运率, AANAA: 花后氮素同化量, NCP: 氮素转运对籽粒的贡献率; 同列数据后不同小写字母表示同主因素5%差异显著水平,*和**分别表示在0.05和0.01水平上差异显著。A: 不同种植模式; B: 施肥量; A×B: 互作。 NT: N translocation; NTE: N transportation efficiency; AANAA: nitrogen assimilation amount after anthesis; NCP: the contribution of nitrogen transport of grain. Labels of different letters in every list show 5% significant difference in different vice factors treatments.* and** denote significantly different at 0.05 and 0.01 probability levels, respectively. A: intercropping systems; B: nitrogen rate; A×B: interacion.
表6 种植模式和施氮量对玉米叶片和茎鞘氮素运移及籽粒贡献的影响(四川雅安, 2011年) Table 6 Effects of intercropping systems and nitrogen rate on nitrogen transport from maize leaves, stem-sheathes to grains, and contribution to the grains in Ya’an (2011)
表7 种植模式和施氮量对玉米叶片和茎鞘氮素运移及籽粒贡献的影响(四川射洪, 2011年) Table 7 Effects of intercropping systems and nitrogen rate on nitrogen transport from maize leaves, stem-sheathes to grains, and contribution to the grains in Shehong (2011)
施肥量 Nitrogen rate
叶片 Leaf
茎鞘 Steam-sheath
花后氮素同化量AANAA (kg hm-2)
氮素转运对籽粒的贡献率NCP (%)
氮转运量 NT (kg hm-2)
氮转运率 NTE (%)
氮转运量 NT (kg hm-2)
氮转运率 NTE (%)
玉/豆Maize/soybean
N0
17.27 c
47.23 a
20.60 c
56.70 a
46.79 c
44.78 c
N90
20.54 b
49.08 a
26.20 b
56.74 a
49.27 c
48.72 bc
N180
25.93 a
45.07 a
34.22 a
58.79 a
59.39 ab
55.21 a
N270
24.86 a
43.45 a
36.53 a
58.33 a
64.29 a
52.75 ab
N360
22.59 ab
43.07 a
34.04 a
59.46 a
55.57 b
50.48 ab
平均Average
22.24 a
45.58 a
30.32 a
58.00 a
55.06 a
50.39 a
玉/薯Maize/sweet potato
N0
17.60 b
55.90 a
19.01 c
60.90 ab
29.61 c
55.44 a
N90
17.92 b
48.49 ab
26.63 ab
63.98 a
32.88 c
57.31 a
N180
23.69 a
43.97 bc
30.77 a
58.82 ab
47.80 b
53.21 a
N270
20.49 ab
40.75 c
27.53 ab
56.95 b
55.25 a
46.95 b
N360
18.15 b
41.24 c
24.05 b
56.22 b
51.36 ab
45.20 b
平均Average
19.57 b
46.07 a
25.60 b
59.37 a
43.38 b
51.62 a
施氮量均值 Average of nitrogen rate
N0
17.44 c
51.58 a
19.80 c
58.80 a
38.20 c
50.11 ab
N90
19.23 c
48.78 ab
26.41 b
60.36 a
41.07 c
53.02 a
N180
24.81 a
44.52 bc
32.50 a
58.81 a
53.59 b
54.21 a
N270
22.68 ab
42.10 c
32.03 a
57.64 a
59.77 a
49.85 ab
N360
20.37 bc
42.16 c
29.05 ab
57.84 a
53.47 b
47.84 b
F值 F-value
A
8.968*
1.049
18.723*
5.701
66.499*
1.231
B
8.387**
5.091**
14.832**
1.611
29.073**
2.296
A×B
2.954
2.549*
2.905*
1.555
2.492*
5.028**
NT: 氮转运量, NTE: 氮转运率, AANAA: 花后氮素同化量, NCP: 氮素转运对籽粒的贡献率; 同列数据后不同小写字母表示同主因素5%差异显著水平。*和**分别表示在0.05和0.01水平上差异显著。A:不同种植模式; B:施肥量; A×B:互作。 NT: N translocation; NTE: N transportation efficiency; AANAA: nitrogen assimilation amount after anthesis; NCP: the contribution of nitrogen transport of grain. Labels of different letters in every list show 5% significant difference in different vice factors treatments.*,** denote significantly different at 0.05 and 0.01 probability levels, respectively. A: intercropping systems; B: nitrogen rate; A×B: interacion.
表7 种植模式和施氮量对玉米叶片和茎鞘氮素运移及籽粒贡献的影响(四川射洪, 2011年) Table 7 Effects of intercropping systems and nitrogen rate on nitrogen transport from maize leaves, stem-sheathes to grains, and contribution to the grains in Shehong (2011)
粒中分配的比例随施氮量的提高而降低, 这也是高氮处理下氮收获指数降低的原因。雅安试验点施氮量为180~360 kg hm-2处理时叶片和茎鞘分配率最高, 差异不显著, 在籽粒中的分配率玉/豆模式下90~180 kg hm-2处理显著高于其他各处理, 玉/薯模式90~180 kg hm-2处理范围内显著高于其他各处理;射洪试验点施氮量为180~270 kg hm-2处理时叶片和茎鞘分配率最高, 在籽粒中的分配率当施氮量为90 kg hm-2处理时显著高于其他各处理。
图1 玉米成熟期植株各器官氮素分配(四川雅安, 2011年) Fig. 1 Proportion of nitrogen accumulation in leaves, stems, and grains at maturity stage in Ya’an (2011)同组数据上不同小写字母表示同主因素5%差异显著水平。Bars superscripted by different letters are significantly different at P<0.05.
玉米成熟期植株各器官氮素分配(四川射洪, 2011年)Fig. 2 Proportion of nitrogen accumulation in leaves, stems, and grains at maturity stage in Shehong (2011)
同组数据上不同小写字母表示同主因素5%差异显著水平。Bars superscripted by different letters are significantly different at P<0.05. 个百分点。说明玉/豆模式能够显著提高玉米的氮素积累, 若轮作效应叠加, 优势更突出, 玉米的生育后期仍能够提供充足的养分, 保证其正常生长, 为高产奠定基础。 3.2 2种套作模式下玉米氮肥调控效应差异及其影响机制氮肥农学利用率、氮肥吸收利用率和氮肥偏生产力是表示氮肥利用率的常用定量指标, 可从不同的侧面描述作物对氮素或氮肥的利用效率。前人关于不同种植模式对作物氮效率影响的研究均指出, 玉米与豆科作物间套作, 有利于氮效率提高[ 20, 21]。本研究表明, 玉米与大豆套作, 各生育阶段的氮素积累量均显著高于与甘薯套作, 籽粒中的分配比例也提高, 导致玉/豆模式下玉米的氮素收获指数、偏生产力、氮肥吸收利用率、氮肥农学利用率均显著高于玉米与甘薯套作, 且2种模式下氮肥调控效应差异较大, 在玉米氮素积累关键时期玉/豆模式在低氮处理下玉米植株氮素的积累量显著高于玉/薯模式相同施氮处理, 而在高氮处理下2种模式间差异不大或者表现相反, 氮肥偏生产力、氮素农艺效率和氮肥利用率也有相似的结果, 这可能是由于低施氮处理下, 大豆固氮能力增加, 转移较多氮素给玉米, 使玉米土壤中氮含量增加, 反硝化作用减弱, 这与雍太文等人研究结果一致[ 9, 10], 对于大豆向玉米转移强度与施氮量之间的数量关系还有待进一步研究。 Osaki等[ 22]指出, 过量施氮导致叶片早衰及光合能力下降, 最终可能影响正在发育籽粒的碳、氮代谢, 不利于氮肥利用率的提高。本研究表明, 施氮显著提高玉米氮素利用效率, 超过一定范围增加施氮量反而有所下降, 2种模式下玉米均在N360处理下氮利用率各项指标显著降低。氮素偏生产力、氮素收获指数随施氮量增加而降低, 而氮肥农艺效率和氮肥利用率随施氮量的增加呈先增后降的变化趋势, 但2种模式的最适施氮处理表现略有不同, 2个试验点玉/豆模式下玉米均在180 kg hm-2施氮量下较其他处理显著提高了氮肥农艺效率和氮肥利用率, 玉/薯模式也在180 kg hm-2施氮量下2个指标值较高, 但与270 kg hm-2施氮量处理差异不显著, 表明玉米与大豆套作在适宜施氮范围内较低氮处理能显著提高氮肥利用率, 而玉米与甘薯套作需要较高的施氮水平。 开花至成熟期是玉米氮素吸收运转分配的重要时期。有研究表明[ 23, 24], 籽粒中的氮一部分来自抽雄前茎和叶中积累的氮素, 另一部分则来源于根系直接供应。何萍等[ 25]指出, 过量供氮使营养体氮素代谢过旺, 导致运往籽粒的氮素减少。因此适宜的施氮量应充分考虑调节植株开花后氮素的吸收和转运。本研究表明, 玉米与大豆套作, 花前氮素转移率低于玉/薯套作, 但差异不大, 而花后氮素同化量玉/豆模式显著高于玉/薯; 适宜施氮可以提高玉米植株花后的氮素转运效率, 即施氮180~ 270 kg hm-2的氮素转运率高于其他处理。同时适宜的施氮量使玉米花后氮素同化量也显著提高, 这说明该施氮范围可有效调节开花前氮素转运以及开花后籽粒的氮素同化, 有利于玉米植株全生育期内的氮素吸收分配。
4 结论与玉米和甘薯套作相比, 玉米与大豆套作玉米氮素积累量、氮收获指数、氮素吸收效率和成熟期籽粒中氮素的分配比例均增加, 特别在玉米的生育后期仍能提供充足的养分, 保证其正常生长, 奠定高产基础。玉/豆模式下玉米在较低氮处理时就能显著提高氮素吸收效率。但2种模式均以施纯氮180~270 kg hm-2处理有利于氮素转运和花后氮素同化量积累。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
王小春, 杨文钰, 任万军, 邓小燕, 张群, 向达兵, 雍太文. 小麦/玉米/大豆和小麦/玉米/甘薯套作体系中玉米产量及养分吸收的差异. , 2012, 18: 803-812WangX C, YangW Y, RenW J, DengX Y, ZhangQ, XiangD B, YongT W. Study on yield and differences of nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. , 2012, 18: 803-812 (in Chinese with English abstract)[本文引用:2][CJCR: 1.883]
[2]
余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响. , 2009, 15: 1-8YuC B, SunJ H, LiL. Effect of interspecific interaction on crop growth and nutrition accumulation. , 2009, 15: 1-8 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[3]
雍太文, 杨文钰, 任万军. 两种三熟套作体系中的氮素转移及吸收利用. , 2009, 42: 3170-3178YongT W, YangW Y, RenW J. Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. , 2009, 42: 3170-3178 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[4]
雍太文, 陈小容, 杨文钰. 小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究. , 2010, 36: 477-485YongT W, ChenX R, YangW Y. Root exudates and nitrogen uptake of wheat in wheat/maize/soybean relay cropping system. , 2010, 36: 477-485 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[5]
雍太文, 杨文钰, 任万军. “小麦/玉米/大豆”套作体系中不同作物间的相互作用及氮素的转移、吸收. , 2009, 23: 320-326YongT W, YangW Y, RenW J. The reciprocity and nitrogen transfer in inter-cropping and inter-planting system of “wheat/maize/soybean”. , 2009, 23: 320-326 (in Chinese with English abstract)[本文引用:1][CJCR: 1.237]
[6]
雍太文, 王小春, 杨文钰. 两种三熟套作体系中的氮素吸收利用及种间相互作用. , 2009, 27: 167-172YongT W, WangX C, YangW Y. Study on the nitrogen uptake and utilization and interspecies reciprocity in the two relay-planting systems. , 2009, 27: 167-172 (in Chinese with English abstract)[本文引用:1]
[7]
宁堂原, 焦念元, 李增嘉. 施氮水平对不同种植制度下玉米氮利用及产量和品质的影响. , 2006, 17: 2332-2336NingT Y, JiaoN Y, LiZ J. Effects of N application rate on N utilization, yield and quality of maize under different cropping systems. , 2006, 17: 2332-2336 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[8]
李隆, 杨思存, 孙建好. 小麦/大豆间作中作物种间的竞争作用和促进作用. , 1999, 10: 197-200LiL, YangS C, SunJ H. Interspecific competition and facilitation in wheat/soybean intercropping system. , 1999, 10: 197-200 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[9]
雍太文, 杨文钰, 向达兵, 朱贞颖. 小麦/玉米/大豆和小麦/玉米/甘薯套作对根际土壤细菌群落多样性及植株氮素吸收的影响. , 2012, 38: 333-343YongT W, YangW Y, XiangD B, ZhuZ Y. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on bacterial community diversity of rhizosphere soil and nitrogen uptake of crops. , 2012, 38: 333-343 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[10]
雍太文, 杨文钰, 向达兵, 万燕, 刘卫国, 王小春. 小麦/玉米/大豆和小麦/玉米/甘薯套作对土壤氮素含量及氮素转移的影响. , 2012, 38: 148-158YongT W, YangW Y, XiangD B, WanY, LiuW G, WangX C. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on soil nitrogen content and nitrogen transfer. , 2012, 38: 148-158 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[11]
GhoshP K, MohantyM, Band yopadhyayK K, PainuliD K, MisraA K. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India II. Effect of nutrient management. , 2006, 96: 90-97[本文引用:1][JCR: 2.474]
[12]
Hauggaard-NielsenH, JensenE S. Evaluating pea and barley cultivars for complementarity in intercropping at levels of soil N availability. , 2001, 72: 185-196[本文引用:1][JCR: 2.474]
[13]
CarrP M, MartinG B, CatonJ S, Poland W W. Forage and nitrogen yield of barley-pea and oat-pea intercrops. , 1998, 90: 79-84[本文引用:1][JCR: 1.518]
[14]
KushwahaH S, Chand elA S. Effect of soybean (Glycine max) intercropping under different nitrogen levels on yield, yield attributes and quality of maize (Zea mays). , 1997, 67: 249-252[本文引用:1]
[15]
吴正锋, 王空军, 董树亭, 胡昌浩, 刘鹏, 张吉旺. 高油玉米籽粒灌浆期间氮素的吸收与分配. , 2005, 38: 697-702WuZ F, WangK J, DongS T, HuC H, LiuP, ZhangJ W. Uptake and partitioning of nitrogen in high oil corn during grain filling period. , 2005, 38: 697-702 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[16]
吕鹏, 张吉旺, 刘伟, 杨今胜, 苏凯, 刘鹏, 董树亭, 李登海. 施氮量对超高产夏玉米产量及氮素吸收利用的影响. , 2011, 17: 852-860LüP, ZhangJ W, LiuW, YangJ S, SuK, LiuP, DongS T, LiD H. Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions. , 2011, 17: 852-860 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[17]
霍中洋, 葛鑫, 张洪程, 戴其根, 许轲, 龚振恺. 施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响. , 2004, 30: 449-454HuoZ Y, GeX, ZhangH C, DaiQ G, XuK, GongZ K. Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat. , 2004, 30: 449-454 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[18]
石玉, 于振文, 王东, 李延奇, 王雪. 施氮量和底追比例对小麦氮素吸收转运及产量的影响. , 2006, 32: 1860-1866ShiY, YuZ W, WangD, LiY Q, WangX. Effects of nitrogen rate and ratio of base fertilizer and topdressing on uptake, translocation of nitrogen and yield in wheat. , 2006, 32: 1860-1866 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[19]
OljacaS, CvetkovicR, KovacevicD, VasicG, MomirovicN. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaseolus vulgaris) intercropping system. , 2000, 135: 261-270[本文引用:1][JCR: 2.041]
[20]
肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. , 2005, 38: 965-973XiaoY B, LiL, ZhangF S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean. , 2005, 38: 965-973 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[21]
肖焱波, 段宗颜, 金航. 小麦/蚕豆间作体系中的氮节约效应及产量优势. , 2007, 13: 267-271XiaoY B, DuanZ Y, JinH. Spared N response and yields advantage of intercropped wheat and fababean. , 2007, 13: 267-271 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[22]
OsakiM, MakotoL, ToshiakiT. Ontogenetic changes in the contents of ribulose-1, 5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxlase and chlorophyll in individual leaves of maize. , 1995, 41: 285-293[本文引用:1][JCR: 0.889]
[23]
易镇邪, 王璞, 申丽霞. 不同类型氮肥对夏玉米氮素累积、转运与氮肥利用的影响. , 2006, 32: 772-778YiZ X, WangP, ShenL X. Effects of different types of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen fertilizer utilization in summer maize. , 2006, 32: 772-778 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[24]
江立庚, 曹卫星, 甘秀琴. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. , 2004, 37: 490-496JiangL G, CaoW X, GanX Q. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. , 2004, 37: 490-496 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[25]
何萍, 金继运, 林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究. , 1998, 31(3): 66-71HeP, JinJ Y, LinB. Effect of N application rates on leaf senescence and its mechanism in spring maize. , 1998, 31(3): 66-71 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]