关键词:超级稻; 籼稻; 粳稻; 干物质积累特征; 光合生产特征; 转运特征 Difference of Characteristics of Photosynthesis, Matter Production and Translocation betweenIndica andJaponica Super Rice GONG Jin-Long, XING Zhi-Peng, HU Ya-Jie, ZHANG Hong-Cheng*, DAI Qi-Gen, HUO Zhong-Yang, XU Ke, WEI Hai-Yan, GAO Hui Innovation Center of Rice Cultivation Technology in the Yangtze Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China Fund: AbstractThis study was to reveal the difference of characteristics of dry matter accumulation and photosynthetic production betweenindica andjaponica super rice. Field experiments were conducted by using five representative super hybridindica combinations and five conventionaljaponica super rice varieties planted on a large scale in Jiangsu region with rice-wheat double cropping rotation. Dry matter accumulation, distribution and translocation, leaf area, leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR), seedling quality and leaf type were analyzed systematically. Results showed that, dry matter accumulation, LAD, CGR, and NAR at the early growth stage (from transplanting to jointing), leaf length, leaf base angle, angle between stem and leaf and drooping angle in top three leaves, leaf area decreasing per day after heading and harvest index ofjaponica rice were less than those ofindica rice significantly, while dry matter accumulation, LAD, CGR, and NAR at the middle and later growth stages (from jointing to maturity), ratio of leaf area of productive tillers, ratio of leaf area of top three leaves, grain-leaf ratio (spikelets per cm2 leaf area, filled grains per cm2 leaf area and grain weight per cm2 leaf area), maximum leaf area index, total filling, grain yield, biological yield, maximum output and apparent output and their ratio were larger than those ofindica rice significantly. Although dry matter weight per stem ofjaponica rice at the main growth stages was lower than that ofindica rice, the superiority of population quantity suggested thatjaponica rice would possess higher dry matter accumulation and leaf area. With the advancement of growth and development, the superiority of photosynthesis and matter production ofjaponica rice was increasing, with a higher dry matter accumulation more than that ofindica rice 25 d after heading approximately. The growth potential ofjaponica rice remained strong at the late period of grain-filling (from milky stage to maturity), while stored matter kept in the stem and sheath exported appropriately at the early period of grain-filling (from heading to milky stage), ensuring the security of efficient photosynthetic layer and the enrichment of high accumulation yield sink. Therefore, balanced formation of high biological yield, stable-increasing-slow-decreasing tendency of leaf area, and the large amounts of high efficient photosynthate production from jointing to maturity are the important characteristics and causes for the efficient and sustainable output of photosynthetic systems, more grain-filling and high yield formation injaponica rice.
Keyword:Super rice; Indica rice; Japonica rice; Characteristics of dry matter accumulation; Characteristics of photosynthetic production; Characteristics of translocation Show Figures Show Figures
表1 籼、粳超级稻实收产量在年度间、类型间及品种间的方差分析 Table 1 Analysis of variance ( F-value) of grain yield among years, types and cultivars between indica and japonica super rice
变异来源 Source
自由度 df
平方和 SS
均方 MS
F值 F-value
年份Year
1
2.92
2.92
14.55**
类型Type
1
26.73
26.73
392.15**
品种Cultivar
4
2.82
0.71
3.26*
年份×类型Year×type
1
2.00
2.00
0.05ns
年份×品种Year×cultivar
4
2.09
0.52
0.36ns
类型×品种Type×cultivar
4
4.60
1.15
10.31**
年份×类型×品种Year×type×cultivar
4
2.05
0.51
0.21ns
误差Error
38
4.40
0.12
总和Sum
59
47.61
*,** 分别表示在0.05和0.01水平上与对照差异显著, ns表示差异不显著( P>0.05)。 *,** Significantly different at 0.05 and 0.01 probability levels, respectively. ns: not significant.
表1 籼、粳超级稻实收产量在年度间、类型间及品种间的方差分析 Table 1 Analysis of variance ( F-value) of grain yield among years, types and cultivars between indica and japonica super rice
表4 籼、粳超级稻主要生育期群体干物质积累的差异 Table 4 Difference of dry matter accumulation at the main growth stages between indica and japonica super rice (t hm-2)
品种 Cultivar
移栽期 Transplanting
N-n
拔节期 Jointing
孕穗期 Booting
抽穗期 Heading
乳熟期 Milky stage
蜡熟期 Waxy stage
成熟期 Maturity
收获指数 Harvest index
粳稻 Japonica rice
南粳44 Nanjing 44
0.06
2.97
4.34
9.09
11.31
15.12
17.48
18.78
0.50
宁粳3号 Ningjing 3
0.06
2.96
4.42
9.06
11.22
15.04
17.42
18.89
0.49
扬粳4038 Yangjing 4038
0.06
2.93
4.36
8.94
11.08
14.88
17.20
18.24
0.50
镇稻11 Zhendao 11
0.06
2.99
4.49
9.25
11.47
15.29
17.64
18.90
0.49
武运粳24 Wuyunjing 24
0.07
3.02
4.52
9.37
11.63
15.44
17.78
19.72
0.49
平均值 Mean
0.06
2.97
4.43
9.14
11.34
15.15
17.50
18.91
0.49
变异系数 CV (%)
6.31
1.12
1.82
1.82
1.89
1.44
1.26
2.79
0.91
籼稻 Indicarice
扬两优6号Yangliangyou 6
0.05
2.84
5.35
9.80
11.99
15.43
16.50
16.88
0.51
两优培九Liangyoupeijiu
0.05
2.91
5.00
9.59
12.35
15.80
16.91
17.73
0.49
新两优6380 Xinliangyou 6380
0.05
2.88
5.42
9.38
11.33
14.75
15.75
16.06
0.51
丰两优1号Fengliangyou 1
0.05
2.86
5.31
9.68
11.83
15.26
16.31
16.33
0.51
II优084 II you 084
0.05
2.83
5.41
9.37
11.31
14.73
15.73
15.87
0.51
平均值 Mean
0.05
2.86
5.30
9.57
11.76
15.20
16.24
16.57
0.50
变异系数 CV (%)
7.11
1.17
3.28
1.98
3.80
3.02
3.11
4.53
1.39
两者差异Difference
±
0.01
0.11
-0.87
-0.43
-0.42
-0.04
1.26
2.33
-0.01
%
25.68**
3.80*
-16.47**
-4.46*
-3.56
-0.29
7.79**
14.07**
-1.94*
*,** 分别表示在0.05和0.01水平上与对照差异显著。*,** Significant difference at 0.05 and 0.01 levels, respectively.
表4 籼、粳超级稻主要生育期群体干物质积累的差异 Table 4 Difference of dry matter accumulation at the main growth stages between indica and japonica super rice (t hm-2)
表5 Table 5 表5(Table 5)
表5 籼、粳超级稻主要生育期单茎干物重的差异 Table 5 Difference of dry matter weight per stem at the main growth stages between indica and japonica super rice (g)
品种 Cultivar
移栽期 Transplanting
N-n
拔节期 Jointing
孕穗期 Booting
抽穗期 Heading
乳熟期 Milky stage
蜡熟期 Waxy stage
成熟期 Maturity
粳稻 Japonica rice
南粳44 Nanjing 44
0.06
0.87
1.07
2.67
3.47
4.72
5.56
6.02
宁粳3号 Ningjing 3
0.07
0.82
1.03
2.51
3.25
4.45
5.21
5.73
扬粳4038 Yangjing 4038
0.08
0.88
1.10
2.68
3.47
4.77
5.59
5.99
镇稻11 Zhendao 11
0.07
0.82
1.04
2.52
3.30
4.51
5.26
5.70
武运粳24 Wuyunjing 24
0.07
0.86
1.09
2.68
3.47
4.71
5.46
6.14
平均值 Mean
0.07
0.85
1.07
2.61
3.39
4.63
5.42
5.92
变异系数 CV (%)
10.30
3.18
2.98
3.40
3.15
3.13
3.20
3.23
籼稻 Indicarice
扬两优6号Yangliangyou 6
0.10
0.98
1.39
3.34
4.24
5.60
6.13
6.39
两优培九Liangyoupeijiu
0.09
1.10
1.41
3.54
4.72
6.09
6.77
7.28
新两优6380 Xinliangyou 6380
0.10
1.18
1.67
3.83
4.73
6.26
6.90
7.24
丰两优1号Fengliangyou 1
0.08
1.02
1.43
3.41
4.33
5.68
6.24
6.39
II优084 II you 084
0.10
1.04
1.51
3.46
4.30
5.69
6.24
6.46
平均值 Mean
0.09
1.06
1.48
3.52
4.46
5.86
6.46
6.75
变异系数 CV (%)
10.53
7.38
7.80
5.47
5.39
4.95
5.48
6.88
两者差异Difference
±
-0.02
-0.21
-0.41
-0.91
-1.07
-1.23
-1.04
-0.84
%
-22.54**
-20.10**
-27.93**
-25.79**
-23.97**
-20.98**
-16.09**
-12.38*
*,** 分别表示在0.05和0.01水平上与对照差异显著。*,** Significant difference at 0.05 and 0.01 levels, respectively.
表5 籼、粳超级稻主要生育期单茎干物重的差异 Table 5 Difference of dry matter weight per stem at the main growth stages between indica and japonica super rice (g)
表6 Table 6 表6(Table 6)
表6 籼、粳超级稻生育前、中期干物质生产积累的差异 Table 6 Difference of production and accumulation of dry matter at early and middle stages between indica and japonica super rice
品种 Cultivar
移栽-拔节期Transplanting-jointing
拔节-抽穗期Jointing-heading
积累量 Biomass (t hm-2)
占生物学产量 RBSM (%)
群体生长率 CGR (g m-2 d-1)
光合势 LAD (m2 d m-2)
净同化率 NAR (g m-2 d-1)
积累量 Biomass (t hm-2)
占生物学产量 RBSM (%)
群体生长率 CGR (g m-2 d-1)
光合势 LAD (m2 d m-2)
净同化率 NAR (g m-2 d-1)
粳稻 Japonica rice
南粳44 Nanjing 44
4.28
22.81
8.93
76.76
9.65
6.97
37.10
22.47
163.84
4.53
宁粳3号 Ningjing 3
4.35
23.05
8.89
78.54
9.48
6.80
36.01
21.94
164.10
4.42
扬粳4038 Yangjing 4038
4.29
23.54
8.95
74.44
9.67
6.72
36.87
21.69
161.48
4.46
镇稻11 Zhendao 11
4.43
23.44
9.23
77.56
9.81
6.98
36.90
23.25
158.30
4.69
武运粳24 Wuyunjing 24
4.46
22.60
9.48
75.94
9.89
7.11
36.06
22.94
163.95
4.62
平均值 Mean
4.36
23.09
9.09
76.65
9.70
6.92
36.59
22.46
162.33
4.54
变异系数 CV (%)
1.79
1.74
2.82
2.04
1.65
2.21
1.40
2.91
1.54
2.44
籼稻 Indicarice
扬两优6号Yangliangyou 6
5.30
31.42
11.53
91.87
9.50
6.64
39.32
22.88
163.31
4.22
两优培九Liangyoupeijiu
4.94
27.87
11.23
83.93
9.74
7.35
41.47
24.52
163.16
4.69
新两优6380 Xinliangyou 6380
5.37
33.47
12.21
87.39
10.19
5.90
36.77
20.36
159.69
3.82
丰两优1号Fengliangyou 1
5.27
32.26
12.25
81.49
10.87
6.51
39.88
22.46
160.12
4.24
II优084 II you 084
5.36
33.78
11.91
84.97
10.31
5.90
37.19
20.35
159.75
3.86
平均值 Mean
5.25
31.76
11.83
85.93
10.12
6.46
38.93
22.11
161.21
4.16
变异系数 CV (%)
3.37
7.46
3.72
4.59
5.26
9.34
5.02
8.05
1.15
8.40
两者差异Difference
±
-0.89
-8.67
-2.73
-9.28
-0.43
0.45
-2.34
0.35
1.13
0.38
%
-16.87**
-27.30**
-23.11**
-10.80*
-4.20
7.03
-6.01
1.57
0.70
9.05
*,** 分别表示在0.05和0.01水平上与对照差异显著。 *,** Significant difference at 0.05 and 0.01 levels, respectively. RBSM: ratio to biomass at maturity; CGR: crop growth rate; LAD: leaf area duration; NAR: net assimilation rate.
表6 籼、粳超级稻生育前、中期干物质生产积累的差异 Table 6 Difference of production and accumulation of dry matter at early and middle stages between indica and japonica super rice
表7 籼、粳超级稻抽穗期干物质积累、叶面积组成与粒叶比的差异 Table 7 Difference of dry matter accumulation, components of leaf area and grain-leaf ratio at heading between indica and japonicasuper rice
品种 Cultivar
干物质重 Biomass (t hm-2)
叶面积指数 Leaf area index
有效叶面积率 Ratio of leaf area of productive tillers (%)
高效叶面积率 Ratio of leaf area of top three leaves (%)
粒叶比Grain-leaf ratio
颖花/叶 Spikelets per cm2 leaf area (cm-2)
实粒/叶 Filled grains per cm2 leaf area (cm-2)
粒重/叶 Grain weight per cm2 leaf area (mg cm-2)
粳稻 Japonica rice
南粳44 Nanjing 44
11.31
7.50
95.34
78.64
0.590
0.541
14.472
宁粳3号 Ningjing 3
11.22
7.52
95.02
75.96
0.606
0.546
14.243
扬粳4038 Yangjing 4038
11.08
7.46
94.77
78.95
0.577
0.531
14.072
镇稻11 Zhendao 11
11.47
7.45
95.02
79.52
0.605
0.558
14.584
武运粳24 Wuyunjing 24
11.63
7.49
95.32
78.25
0.609
0.548
14.815
平均值 Mean
11.34
7.48
95.09
78.27
0.597
0.545
14.437
变异系数 CV (%)
1.89
0.36
0.25
1.75
2.27
1.78
2.01
籼稻 Indicarice
扬两优6号Yangliangyou 6
11.99
7.46
92.96
73.96
0.596
0.491
13.022
两优培九Liangyoupeijiu
12.35
7.24
92.57
72.27
0.582
0.500
13.158
新两优6380 Xinliangyou 6380
11.33
7.23
92.11
71.02
0.565
0.474
12.669
丰两优1号Fengliangyou 1
11.83
7.42
92.95
71.37
0.600
0.497
12.677
II优084 II you 084
11.31
7.43
92.94
70.79
0.556
0.476
12.365
平均值 Mean
11.76
7.36
92.71
71.88
0.580
0.488
12.778
变异系数 CV (%)
3.80
1.52
0.40
1.80
3.27
2.50
2.46
两者差异Difference
±
-0.42
0.13
2.39
6.38
0.017
0.057
1.659
%
-3.56
1.70
2.57**
8.88**
2.96
11.72**
12.98**
*,** 分别表示在0.05和0.01水平上与对照差异显著。*,** Significant difference at 0.05 and 0.01 levels, respectively.
表7 籼、粳超级稻抽穗期干物质积累、叶面积组成与粒叶比的差异 Table 7 Difference of dry matter accumulation, components of leaf area and grain-leaf ratio at heading between indica and japonicasuper rice
表8 籼、粳超级稻抽穗期株型的差异 Table 8 Difference of plant type at heading between indica and japonica super rice
品种 Cultivar
株高 Plant height (cm)
剑叶Flag leaf
倒二叶2nd leaf
倒三叶3rd leaf
上三叶 比叶重 SLWTTL (mg cm-2)
长 LL (cm)
叶基角 LBA (°)
叶开角 ABSL (°)
披垂度 DA (°)
长 LL (cm)
叶基角 LBA (°)
叶开角 ABSL (°)
披垂度 DA (°)
长 LL (cm)
叶基角LBA (°)
叶开角ABSL (°)
披垂度DA (°)
粳稻 Japonica rice
Nanjing 44
99.8
28.3
3.5
9.9
6.4
41.7
10.5
17.5
7.0
35.8
15.3
25.1
9.8
3.688
Ningjing 3
101.2
27.8
3.5
9.6
6.1
39.1
10.0
18.6
8.5
35.8
14.2
25.2
11.0
3.599
Yangjing 4038
104.6
28.1
3.9
9.9
6.0
40.8
11.3
18.0
6.7
35.9
15.7
26.5
10.9
3.705
Zhendao 11
104.3
27.9
3.8
9.3
5.5
39.5
10.9
18.6
7.7
34.7
16.9
25.6
8.7
3.706
Wuyunjing 24
102.2
29.3
3.6
9.3
5.8
40.1
10.4
18.1
7.7
35.9
16.8
25.7
8.9
3.712
Mean
102.4
28.3
3.6
9.6
6.0
40.3
10.6
18.1
7.5
35.6
15.8
25.6
9.8
3.682
CV (%)
1.99
2.16
5.20
3.10
5.68
2.59
4.37
2.41
9.45
1.43
7.04
2.21
11.02
1.28
籼稻 Indicarice
Yangliangyou 6
120.6
43.8
5.4
12.6
7.2
62.4
11.5
30.0
18.5
57.5
23.6
55.4
31.8
3.117
Liangyoupeijiu
119.5
40.0
6.0
14.6
8.6
58.6
12.9
27.4
14.4
54.2
21.2
57.4
36.3
3.163
Xinliangyou 6380
124.9
42.4
5.3
13.3
7.9
59.6
12.7
30.5
17.8
53.0
19.2
65.4
46.2
3.172
Fengliangyou 1
126.0
40.3
5.7
13.1
7.4
57.4
12.0
27.6
15.7
57.6
20.6
60.4
39.8
3.150
II you 084
121.4
44.4
5.2
12.9
7.6
59.5
12.1
27.7
15.7
50.7
21.5
60.6
39.2
3.283
Mean
122.5
42.2
5.5
13.3
7.7
59.5
12.2
28.6
16.4
54.6
21.2
59.9
38.6
3.177
CV (%)
2.30
4.67
5.60
5.84
7.01
3.10
4.75
5.21
10.23
5.45
7.53
6.35
13.67
1.98
两者差异Difference
±
-20.1
-13.9
-1.9
-3.7
-1.8
-19.2
-1.6
-10.5
-8.9
-19.0
-5.4
-34.2
-28.8
0.505
%
-16.38**
-32.91**
-34.15**
-27.73**
-23.15**
-32.31**
-13.30**
-36.69**
-54.14**
-34.81**
-25.59**
-57.20**
-74.56**
15.88**
*,** 分别表示在0.05和0.01水平上与对照差异显著。 *,** Significant difference at 0.05 and 0.01 levels, respectively. LL: leaf length; LBA: leaf base angle; ABSL: angle between stem and leaf; DA: drooping angle; SLWTTL: specific leaf weight of top three leaves.
表8 籼、粳超级稻抽穗期株型的差异 Table 8 Difference of plant type at heading between indica and japonica super rice
表9 籼、粳超级稻抽穗后干物质生产的差异 Table 9 Difference of production of dry matter after heading between indica and japonica super rice
品种 Cultivar
积累量 Biomass (t hm-2)
占生物学产量 RBSM (%)
光合势 LAD (m2 d m-2)
群体 生长率 CGR (g m-2 d-1)
净同化率 NAR (g m-2 d-1)
叶面积衰减率 Leaf area decreasing per day (LAI d-1)
总充实量 Total filling (t hm-2)
实收产量 Grain yield (t hm-2)
粳稻 Japonica rice
南粳44 Nanjing 44
7.47
39.79
281.92
14.10
2.82
0.082
9.62
10.89
宁粳3号 Ningjing 3
7.67
40.60
275.76
15.04
2.94
0.083
9.56
10.74
扬粳4038 Yangjing 4038
7.16
39.24
285.97
13.51
2.64
0.078
9.41
10.60
镇稻11 Zhendao 11
7.43
39.33
290.53
13.52
2.72
0.079
9.73
10.94
武运粳24 Wuyunjing 24
8.08
41.00
303.49
14.44
2.81
0.074
10.02
11.31
平均值 Mean
7.56
39.99
287.53
14.12
2.78
0.079
9.67
10.89
变异系数 CV (%)
4.54
1.95
3.63
4.59
4.03
4.54
2.36
2.44
籼稻 Indicarice
扬两优6号Yangliangyou 6
4.89
28.96
205.82
11.37
2.68
0.124
8.61
9.86
两优培九Liangyoupeijiu
5.38
30.34
212.32
11.96
2.83
0.112
8.68
10.05
新两优6380 Xinliangyou 6380
4.73
29.46
195.00
11.26
2.74
0.123
8.11
9.41
丰两优1号Fengliangyou 1
4.50
27.57
201.67
10.47
2.55
0.127
8.37
9.54
II优084 II you 084
4.56
28.74
190.12
11.40
2.72
0.134
8.21
9.27
平均值 Mean
4.81
29.01
200.98
11.29
2.70
0.124
8.40
9.62
变异系数 CV (%)
7.31
3.50
4.35
4.72
3.70
6.30
2.95
3.34
两者差异Difference
±
2.75
10.98
86.55
2.83
0.08
-0.045
1.27
1.27
%
57.17**
37.83**
43.06**
25.04**
2.94
-36.28**
15.15**
13.21**
*,** 分别表示在0.05和0.01水平上与对照差异显著。 *,** Significant difference at 0.05 and 0.01 levels, respectively. RBSM: ratio to biomass at maturity; LAD: leaf area duration; CGR: crop growth rate; NAR: net assimilation rate.
表9 籼、粳超级稻抽穗后干物质生产的差异 Table 9 Difference of production of dry matter after heading between indica and japonica super rice
表10 籼、粳超级稻抽穗后单茎茎鞘物质的输出与转运的差异 Table 10 Difference of production and translocation of dry matter per stem and sheath after heading between indica and japonica super rice
品种 Cultivar
单茎茎鞘重Weight per stem and sheath (g)
最大输出率 Maximum output rate (%)
表观输出率 Apparent output rate (%)
抽穗期 Heading
乳熟期 Milky stage
成熟期 Maturity
抽穗-乳熟 Heading- milky stage
抽穗-成熟 Heading- maturity
乳熟-成熟 Milky stage- maturity
粳稻 Japonica rice
南粳44 Nanjing 44
1.96
1.56
1.85
0.41
0.11
0.29
20.67
5.83
宁粳3号 Ningjing 3
1.81
1.43
1.68
0.39
0.13
0.26
21.38
7.08
扬粳4038 Yangjing 4038
2.04
1.56
1.95
0.48
0.09
0.39
23.37
4.28
镇稻11 Zhendao 11
1.92
1.47
1.82
0.44
0.10
0.35
23.06
4.96
武运粳24 Wuyunjing 24
1.92
1.47
1.84
0.45
0.09
0.36
23.30
4.44
平均值 Mean
1.93
1.50
1.83
0.43
0.10
0.33
22.36
5.32
变异系数 CV (%)
4.28
3.99
5.24
8.19
18.23
16.15
5.57
21.69
籼稻 Indicarice
扬两优6号Yangliangyou 6
2.18
1.68
1.96
0.50
0.22
0.28
22.87
9.99
两优培九Liangyoupeijiu
2.55
1.95
2.18
0.60
0.38
0.22
23.45
14.73
新两优6380 Xinliangyou 6380
2.53
1.86
2.15
0.66
0.38
0.28
26.26
14.99
丰两优1号Fengliangyou 1
2.21
1.64
1.85
0.57
0.37
0.20
25.88
16.62
II优084 II you 084
2.29
1.84
1.97
0.45
0.32
0.13
19.78
14.17
平均值 Mean
2.35
1.80
2.02
0.56
0.33
0.22
23.65
14.10
变异系数 CV (%)
7.44
7.28
6.88
14.85
20.40
28.54
11.06
17.52
两者差异Difference
±
-0.42
-0.30
-0.19
-0.13
-0.23
0.11
-1.29
-8.78
%
-17.96**
-16.54*
-9.48
-22.52*
-69.35**
47.02
-5.46
-62.28**
*,** 分别表示在0.05和0.01水平上与对照差异显著。*,** Significant difference at 0.05 and 0.01 levels, respectively.
表10 籼、粳超级稻抽穗后单茎茎鞘物质的输出与转运的差异 Table 10 Difference of production and translocation of dry matter per stem and sheath after heading between indica and japonica super rice
4 结论随着水稻生长发育的持续, 群体干物质积累和光合生产优势越来越大, 高生物学产量的稳定形成和叶面积“稳升稳降”态势以及拔节至成熟期较高的有效高效光合物质生产, 是粳稻光合物质生产及高产形成的重要特征和途径。以群体数量优势稳健地早发, 通过有效无效生长精准对接构建拔节期适宜规模的高质群体; 拔节至抽穗期有效高效生长量大, 株型挺起, 抽穗期具备协调合理的群体冠层小气候、温光水气分布、干物质积累量、叶系组成和源库结构; 抽穗后光合系统高效持续产出、光合生产积累物质多、茎鞘二次增重大, 而出穗前贮藏器官非结构性碳水化合物输出转运量少, 有效保障了高库容的安全充实, 是粳稻光合物质生产与转运及高产形成的另一重要特征和途径。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
NtanosD A, KoutroubasS D. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. , 2003, 74: 93-101[本文引用:1][JCR: 2.474]
[3]
HuangM, ZouY B, FengY H, ChengZ W, MoY L, IbrahimM, XiaB, JiangP. No-tillage and direct seeding for super hybrid rice production in rice-oilseed rape cropping system. , 2011, 34: 278-286[本文引用:1][JCR: 2.8]
[4]
李杰, 张洪程, 常勇, 龚金龙, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式水稻高产栽培条件下的光合物质生产特征研究. , 2011, 37: 1235-1248LiJ, ZhangH C, ChangY, GongJ L, GuoZ H, DaiQ G, HuoZ Y, XuK, WeiH Y, GaoH. Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. , 2011, 37: 1235-1248 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[5]
马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. , 2011, 44: 4159-4169MaQ, YangX, LiM, LiG Y, ZhangH C, DaiQ G, HuoZ Y, XuK, WeiH Y, GaoH. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. , 2011, 44: 4159-4169 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[6]
李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 水稻高产氮高效型品种的物质积累与转运特性. , 2013, 39: 101-109LiM, ZhangH C, YangX, GeM J, MaQ, WeiH Y, DaiQ G, HuoZ Y, XuK. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency. , 2013, 39: 101-109 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[7]
FukushimaA, ShiratsuchiH, YamaguchiH, FukudaA. Effects of nitrogen application and planting density on morphological traits, dry matter production and yield of large grain type rice variety Bekoaoba and strategies for super high-yielding rice in the Tohoku region of Japan. , 2011, 14: 56-63[本文引用:1][JCR: 0.802]
[8]
张军, 张洪程, 郭保卫, 葛梦婕, 周兴涛, 朱聪聪, 董啸波, 陈京都, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 抛栽稻高产形成及生态生理特征. , 2012, 38: 2217-2228ZhangJ, ZhangH C, GuoB W, GeM J, ZhouX T, ZhuC C, DongX B, ChenJ D, DaiQ G, HuoZ Y, XuK, WeiH Y, GaoH. High yield formation and its eco-physiological characteristics of cast transplanting rice. , 2012, 38: 2217-2228 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[9]
AnsariT H, YamamotoY, YoshidaT, MiyazakiA, WangY L. Cultivar differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinants of the spikelet number per panicle in relation to dry matter production and nitrogen absorption. , 2013, 49: 433-444[本文引用:1][JCR: 0.889]
[10]
吴文革, 张洪程, 钱银飞, 陈烨, 徐军, 吴桂成, 翟超群, 霍中洋, 戴其根. 超级杂交中籼水稻物质生产特性分析. , 2007, 21: 287-293WuW G, ZhangH C, QianY F, ChenY, XuJ, WuG C, ZhaiC Q, HuoZ Y, DaiQ G. Analysis on dry matter production characteristics of middle-season indica super hybrid rice. , 2007, 21: 287-293 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[11]
吴桂成, 张洪程, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, 孙菊英. 南方粳型超级稻物质生产积累及超高产特征的研究. , 2010, 36: 1921-1930WuG C, ZhangH C, DaiQ G, HuoZ Y, XuK, GaoH, WeiH Y, ShaA Q, XuZ J, QianZ H, SunJ Y. Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in South China. , 2010, 36: 1921-1930 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[12]
ZhangY B, TangQ Y, ZouY B, LiD Q, QinJ Y, YangS H, ChenL J, XiaB, PengS B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. , 2009, 114: 91-98[本文引用:1][JCR: 2.474]
[13]
史鸿儒, 张文忠, 解文孝, 杨庆, 张振宇, 韩亚东, 徐正进, 陈温福. 不同氮肥施用模式下北方粳型超级稻物质生产特性分析. , 2008, 34: 1985-1993ShiH R, ZhangW Z, XieW X, YangQ, ZhangZ Y, HanY D, XuZ J, ChenW F. Analysis of matter production characteristics under different nitrogen application patterns of japonica super rice in north China. , 2008, 34: 1985-1993 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[14]
龚金龙, 胡雅杰, 葛梦婕, 龙厚元, 常勇, 马群, 杨雄, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 南方粳型超级稻氮肥群体最高生产力及其形成特征的研究. , 2012, 26: 558-527GongJ L, HuY J, GeM J, LongH Y, ChangY, MaQ, YangX, ZhangH C, DaiQ G, HuoZ Y, XuK, WeiH Y. The highest population productivity of N fertilization and its formation characteristics on japonica super rice in south China. , 2012, 26: 558-527 (in Chinese with English abstract)[本文引用:1][CJCR: 1.237]
[15]
张洪程, 马群, 杨雄, 李敏, 葛梦婕, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律. , 2012, 38: 86-98ZhangH C, MaQ, YangX, LiM, GeM J, LiG Y, DaiQ G, HuoZ Y, XuK, WeiH Y, GaoH, LiuY Y. The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. , 2012, 38: 86-98 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[16]
龚金龙, 张洪程, 李杰, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 李邴维, 沙安勤, 周有炎, 罗学超, 刘国林. 超级稻生态育种及超高产栽培特征与途径的研究进展. , 2011, 13(1): 25-33GongJ L, ZhangH C, LiJ, ChangY, DaiQ G, HuoZ Y, XuK, WeiH Y, LiD J, LiB W, ShaA Q, ZhouY Y, LuoX C, LiuG L. Research progress on ecological breeding and cultivation characteristics of super rice and approaches of super high yield. , 2011, 13(1): 25-33 (in Chinese with English abstract)[本文引用:1]
[17]
杨泽峰, 徐辰武, 顾世梁. SPSS农业试验数据分析实用教程. 南京: 南京大学出版社, 2009YangZ F, XuC W, GuS L. Practical Tutorials for SPSS in Data Statistics of Agricultural Experiment. Nanjing: Nanjing University Press, 2009 (in Chinese)[本文引用:1]
[18]
龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻产量构成特征的差异研究. 核农学报, ()GongJ L, XingZ P, HuY J, ZhangH C, DaiQ G, HuoZ Y, XuK, WeiH Y, GaoH. Studies on the difference of yield components characteristics between indica and japonica super rice. J Nucl Agric Sci, )(in Chinese with English abstract)[本文引用:2]
[19]
杨惠杰, 杨仁崔, 李义珍, 郑景生, 姜照伟. 水稻超高产的决定因素. , 2002, 17: 199-203YangH J, YangR C, LiY Z, ZhengJ S, JiangZ W. Determination factor for super-high yield of rice. , 2002, 17: 199-203 (in Chinese with English abstract)[本文引用:1][CJCR: 0.7902]
[20]
YingJ F, PengS B, HeQ R, YangH, YangC D, VisperasR M, CassmanK G. Comparison of high yield in tropical and subtropical environments: I. Determinants of grain and dry matter yields. , 1998, 57: 71-84[本文引用:1][JCR: 2.474]
[21]
谢华安, 王乌齐, 杨惠杰, 杨高群, 李义珍. 杂交水稻超高产特性研究. , 2003, 18: 201-204XieH A, WangW Q, YangH J, YangG Q, LiY Z. The characteristics of super high-yielding hybrid rice. , 2003, 18: 201-204 (in Chinese with English abstract)[本文引用:1][CJCR: 0.7902]
[22]
YangJ C, ZhangJ H. Crop management techniques to enhance harvest index in rice. , 2010, 61: 3177-3189[本文引用:1][JCR: 5.242]
[23]
张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. , 2010, 43: 2645-2660ZhangH C, WuG C, WuW G, DaiQ G, HuoZ Y, XuK, GaoH, WeiH Y, HuangX F, GongJ L. The SOI model of quantitative cultivation of super-high yielding rice. , 2010, 43: 2645-2660 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[24]
张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 吕修涛, 万靓军, 黄银忠. 水稻氮肥精确后移及其机制. , 2011, 37: 1837-1851ZhangH C, WuG C, DaiQ G, HuoZ Y, XuK, GaoH, WeiH Y, LüX T, WanL J, HuangY Z. Precise postponing nitrogen application and its mechanism in rice. , 2011, 37: 1837-1851 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[25]
张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. , 2012, 28(2): 39-44ZhangH C, ZhaoP H, SunJ Y, WuG C, XuJ, DuanmuY X, DaiQ G, HuoZ Y, XuK, WeiH Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. , 2012, 28(2): 39-44 (in Chinese with English abstract)[本文引用:1][CJCR: 1.299]
[26]
TakaiT, MatsuuraS, NishioT, OhsumiA, ShiraiwaT, HorieT. Rice yield potential is closely related to crop growth rate during late reproductive period. , 2006, 96: 328-335[本文引用:1][JCR: 2.474]
[27]
陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 沈阳: 辽宁科学技术出版社, 1995. pp69-94ChenW F, XuZ J, ZhangL B. Physiological Basis of Rice Breeding for Super Yield. Shenyang: Liaoning Science and Technology Publishing House, 1995. pp69-94(in Chinese)[本文引用:1]
[28]
王国忠, 彭斌, 陆峥嵘, 王余龙. 直播水稻物质生产特点及其高产调控技术研究. , 2002, 18(2): 32-37WangG Z, PengB, LuZ R, WangY L. Study on production characteristics and high-yield control techniques of direct seeding rice. , 2002, 18(2): 32-37 (in Chinese with English abstract)[本文引用:1][CJCR: 0.468]
[29]
凌启鸿, 张洪程, 苏祖芳, 凌励. 稻作新理论——水稻叶龄模式. 北京: 科学出版社, 1994LingQ H, ZhangH C, SuZ F, LingL. The New Theory of Rice Cultivation—the Leaf age model of Rice. Beijing: Science Press, 1994 (in Chinese)[本文引用:1]
[30]
凌启鸿, 张洪程, 丁艳峰, 戴其根, 凌励, 王绍华, 杨建昌, 朱庆森, 苏祖芳. 水稻精确定量栽培理论与技术. 北京: 中国农业出版社, 2007LingQ H, ZhangH C, DingY F, DaiQ G, LingL, WangS H, YangJ C, ZhuQ S, SuZ F. The Theory and Technology of Precise and Quantitative Cultivation in Rice. Beijing: China Agriculture Press, 2007 (in Chinese)[本文引用:1]
[31]
刘军, 余铁桥. 大穗型水稻超高产产量形成特点及物质生产分析. , 1998, 24(1): 1-6LiuJ, YuT Q. Analysis of the formation of super-high yield of big panicle rice and its dry matter production. , 1998, 24(1): 1-6 (in Chinese with English abstract)[本文引用:1]
[32]
赵全志, 黄丕生, 凌启鸿. 水稻群体光合速率和茎鞘贮藏物质与产量关系的研究. , 2001, 34: 304-310ZhaoQ Z, HuangP S, LingQ H. Relations between canopy apparent photosynthesis and store matter in stem and sheath between and yield and nitrogen regulations in rice. , 2001, 34: 304-310 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[33]
杨建昌, 朱庆森, 王志琴, 郎有忠. 亚种间杂交稻光合特性及物质积累与运转的研究. , 1997, 23: 82-88YangJ C, ZhuQ S, WangZ Q, LangY Z. Photosynthetic characteristics, dry matter accumulation and its translocation in intersubspecific hybrid rice. , 1997, 23: 82-88 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[34]
张洪程, 吴桂成, 李德剑, 肖跃成, 龚金龙, 李杰, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 周有炎, 王宝金, 吴爱国. 杂交粳稻13. 5 t hm-2超高产群体动态特征及形成机制的探讨. , 2010, 36: 1547-1558ZhangH C, WuG C, LiD J, XiaoY C, GongJ L, LiJ, DaiQ G, HuoZ Y, XuK, GaoH, WeiH Y, ShaA Q, ZhouY Y, WangB J, WuA G. Population characteristics and formation mechanism for super-high-yielding hybrid japonica rice (13. 5 t ha-1). , 2010, 36: 1547-1558 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[35]
李旭毅, 池忠志, 姜心禄, 郑家国. 成都平原两熟区籼粳稻品种籽粒灌浆特性. , 2012, 45: 3256-3264LiX Y, ChiZ Z, JiangX L, ZhengJ G. Analysis on grain filling characteristics of indica and japonica rice in rapeseed (wheat)-rice planting area in Chengdu basin. , 2012, 45: 3256-3264 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[36]
焦德茂, 李霞, 黄雪清, 季本华. 不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系. , 2002, 35: 487-492JiaoD M, LiX, HuangX Q, JiB H. The relationship among photoinhibition, photooxidation and early aging at later developmental stages in different high yield varieties. , 2002, 35: 487-492 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[37]
张洪程, 郭保卫, 陈厚存, 周兴涛, 张军, 朱聪聪, 陈京都, 李桂云, 吴中华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 杨雄. 水稻有序摆、抛栽的生理生态特征及超高产形成机制. , 2013, 46: 463-475ZhangH C, GuoB W, ChenH C, ZhouX T, ZhangJ, ZhuC C, ChenJ D, LiG Y, WuZ H, DaiQ Q, HuoZ Y, XuK, WeiH Y, GaoH, YangX. Eco-physiological characteristics and super high yield formation mechanism of ordered transplanting and optimized broadcasting rice. , 2013, 46: 463-475 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[38]
张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. , 2013, 46: 686-704ZhangH C, ZhangJ, GongJ L, ChangY, LiM, GaoH, DaiQ G, HuoZ Y, XuK, WeiH Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”. , 2013, 46: 686-704 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[39]
杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. , 2006, 39: 1336-1345YangJ C, DuY, WuC F, LiuL J, WangZ Q, ZhuQ S. Growth and development characteristics of super-high-yielding mid- season japonica rice. , 2006, 39: 1336-1345 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]