关键词:南方双季稻区; 生产力; 生态生理特征 Productivity and Eco-physiological Characteristics of LateJaponica Rice in Double-Cropping System ZHANG Hong-Cheng1, XU Ke1, ZHANG Jun1, LI Guo-Ye1, DONG Xiao-Bo1, HUA Jin1, ZHOU Pei-Jian2, CHENG Fei-Hu2, HUANG Da-Shan1, CHEN Zhong-Ping2, CHEN Guo-Liang4, FANG Ming-Zhen4, DAI Qi-Gen1, HUO Zhong-Yang1, WEI Hai-Yan1, GAO Hui1 1Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China
2Jiangxi Agricultural Technology Extension Station, Nanchang 330046, China
3Bureau of Agriculture of Shanggao County of Jiangxi Province, Shanggao 336400, China
4 Bureau of Agriculture of Poyang County of Jiangxi Province, Poyang 333100, China
AbstractIn the condition of high yield cultivation, a field experiment was conducted with representativejaponica rice cultivars (Wuyunjing 24, Nanjing 44, Zhendao 11, Changyou 1, Changyou 5, Yongyou 8) and the typical local lateindica rice cultivars in double-cropping areas (Poyang and Shanggao in Jiangxi Province). Differences of grain yield, quality and net income betweenjaponicaandindicawere studied systematically. The productivity advantages and its mechanism of latejaponicarice were explained from the effects of temperature and light, plant type, and photosynthesis. Results showed that the average yield of latejaponica rice in three years was 9.6, 8.3, and 9.9 t ha-1 in 2011, which was higher than that ofindica rice significantly. The highest yield of Yongyou 8 in 2011 was 10.6 t ha-1. The grain number per panicle, seed-setting rate ofjaponica rice were higher than those ofindicarice, which was the reason of higher yield ofjaponicarice. Milling quality, cooking and eating quality ofjaponica rice were also better than those ofindicarice significantly, while appearance quality showed an opposite tendency. The brown rice rate, milled rice rate, and head rice rate ofjaponicarice were significantly higher than those ofindica rice, while the amylose content, protein content ofjaponicarice were significantly lower than thaose ofindicarice. And the gel consistency ofjaponicarice was also longer. The appearance quality including chalky grain rate, chalkiness area and degree ofjaponica were significantly higher than those ofindicarice. The benefits of latejaponica rice were significantly higher than those ofindica rice, with the net income of 11 890.6, 10 252.1, 16 565.9 Yuan ha-1 in these years, respectively, which were higher than those ofindicarice by 23.8%, 23.6%, and 26.7% respectively. The physiological and ecological characteristics of productive advantages of latejaponica rice in double-cropping rice area were as follows. Firstly, growth duration ofjaponica rice was longer than that ofindica rice significantly andjaponica rice was more adapted to grow in cool weather at the later period of grain filling, increasing utilization of temperature and solar radiation and ensuring maturity safely. Secondly, strong photosynthetic capacity ofjaponica rice at the later period increased dry matter accumulation and total grain filling. Thirdly,japonica rice improved resistances to cold, premature senescence, and lodging due to strong root, stem and sheath.
Keyword:Southern double-cropping rice area; Productivity; Eco-physiological characteristics Show Figures Show Figures
表2 不同类型品种水稻产量及其构成因素 Table 2 Grain yield and its components in different types of cultivar
品种 Cultivar
穗数 No. of panicles (×104hm-2)
每穗粒数 Grains per panicle
总颖花量 Total spikelets (×104 hm-2)
结实率Seed-setting rate (%)
千粒重1000-grain weight (g)
理论产 Theoretic yield (t hm-2)
实产 Actual yield (t hm-2)
2009, 鄱阳Poyang
粳稻 JR
武育粳24 Wuyujing 24
306.0Aabc
129.1Bbc
39183.5Ab
91.7Aa
26.7BCbc
9.7ABb
9.4Bbc
南粳44 Nanjing 44
310.5Aabc
123.9Bc
39257.8Ab
92.3Aa
26.3Cc
9.3BCb
9.1Bc
甬优8号 Yongyou 8
264.0Bd
173.6Aa
46445.9Aa
86.1BCb
27.1ABab
10.7Aa
10.3Aa
常优1号 Changyou 1
291.0ABc
141.4Bb
42198.5Aab
87.4Bb
27.5Aa
9.9ABb
9.6Bb
平均 Mean
292.9
142.0
41771.4
89.4
26.9
9.9
9.6
变异系数 CV(%)
7.2
15.7
8.2
3.5
1.9
5.8
5.3
籼稻 IR
黄华占 Huanghuazhan
332.1Aa
121.2Bc
39591.3Ab
82.9CDc
22.8Ef
7.6Dd
7.4De
赣晚籼 Ganwanxian
325.6Aab
101.3Cd
31598.72Bc
83.1CDc
27.2ABab
7.5Dd
7.2De
天优华占 Tianyouhuazhan
304.2Aabc
141.2Bb
41950.4Aab
79.6DEd
24.9De
8.5CDc
8.2Cd
岳优9113 Yueyou 9113
297.6ABbc
135.3Bbc
39468.5Ab
81.2Ed
25.4Dd
8.2Dcd
8.0Cd
平均 Mean
314.9
124.8
38359.7
81.7
25.1
8.0
7.7
变异系数 CV(%)
5.3
14.2
11.5
3.5
1.9
6.3
7.1
2010, 上高Shanggao
粳稻 JR
武育粳24 Wuyujing 24
306.0ABCDabc
120.3Cc
36890.5Ccd
83.1bBbc
26.5BCb
8.1BCb
7.9Bb
镇稻11 Zhendao 11
316.5ABCab
114.6Cc
36468.2Cd
82.7Bc
26.2Cb
7.9BCDbc
7.7Bb
甬优8号 Yongyou 8
276.0Dd
146.5Aa
40622.4Aa
83.6ABab
27.3ABa
9.2Aa
9.0Aa
常优1号 Changyou 1
289.5BCDcd
132.6Bb
38378.3ABCbc
84.1Aa
27.5Aa
8.9ABa
8.7Aa
平均 Mean
297.0
128.5
38089.8
83.4
26.9
8.5
8.3
变异系数 CV(%)
6.0
11.1
4.9
0.7
2.3
7.5
7.6
籼稻 IR
黄华占 Huanghuazhan
326.4Aa
119.6Cc
37594.9BCcd
76.5Cd
22.4Fe
6.7Ede
6.4CDde
赣晚籼 Ganwanxian
318.5ABab
97.1Dd
30524.5De
73.8De
27.3ABa
6.2Ee
6.0De
天优华占 Tianyouhuazhan
287.6CDcd
137.6ABb
39420.5ABab
73.4DEe
24.8Dc
7.2CDEcd
6.9Cc
五优308 Wuyou 308
301.2ABCDbc
135.3ABb
40224.4Aa
72.6Ef
23.4Ed
6.9DEde
6.7Ccd
平均Mean
308.4
122.4
36941.1
74.1
24.5
6.8
6.5
变异系数 CV(%)
5.6
15.3
11.9
2.3
8.7
6.1
6.0
2011, 上高Shanggao
粳稻 JR
武育粳24 Wuyujing 24
321.0ABa
128.6Cc
41310.4ABbc
92.4Aa
26.7Aab
10.2ABab
9.7BCb
镇稻11 Zhendao 11
324.0ABa
122.3Cc
39842.4ABc
92.3Aa
26.4Ab
9.7ABCb
9.4CDc
甬优8号 Yongyou 8
253.5Cc
181.2Aa
46196.0Aab
87.9Bc
27.1Aa
10.9Aa
10.6Aa
常优5号 Changyou 5
280.5BCbc
153.9
43072.8Aabc
89.6Bb
26.3Ab
10.2ABab
9.9Bb
平均 Mean
294.8
146.5
42605.4
90.6
26.6
10.3
9.9
变异系数 CV(%)
11.5
18.3
6.4
2.4
1.3
5.2
5.4
籼稻 IR
黄华占 Huanghuazhan
335.6Aa
123.1Cc
40721.2ABbc
83.2Ce
22.8De
7.8Dd
7.6Fe
赣晚籼 Ganwanxian
326.4ABa
103.2Dd
33697.5Bd
84.6Cd
27.3Aa
7.8Dd
7.5Fe
天优华占 Tianyouhuazhan
312.3ABab
151.6Bb
47691.0Aa
78.5Df
25.2Bc
9.4BCbc
9.1Dc
五优308 Wuyou 308
309.1ABab
148.9Bb
45946.3Aab
77.6Df
23.8Cd
8.5CDcd
8.3Ed
平均 Mean
320.9
131.7
42014.0
81.0
24.8
8.4
8.1
变异系数 CV(%)
10.6
17.4
14.9
4.3
7.9
8.8
9.1
标以不同大小写字母的值分别在0.01和0.05水平上差异显著。 Values followed by different letters are significantly different at 0.05 (lowercase) and 0.01 (capital) levels, respectively. CV: coefficient of variation. JR: japonica rice; IR: indica rice.
表2 不同类型品种水稻产量及其构成因素 Table 2 Grain yield and its components in different types of cultivar
表3 Table 3 表3(Table 3)
表3 不同类型品种水稻稻米品质的差异 Table 3 Difference of rice quality in different types of cultivars
品种 Cultivar
加工品质 Milling quality (%)
外观品质 Appearance quality (%)
蒸煮食味品质 Cooking and eating quality
糙米率 BRR
精米率 MRR
整精米率 HRR
垩白米率 CGR
垩白大小 CR
垩白度 CD
直链淀粉含量 AC (%)
蛋白质含量 PC (%)
胶稠度 GC (mm)
2009, 鄱阳 Poyang
粳稻 JR
武育粳24 Wuyujing 24
85.1Aa
73.1Aab
67.3ABa
20.3Cc
12.8BCcd
2.6Ccd
16.1Cd
7.8CDd
68.5ABb
南粳44 Nanjing 44
84.7Aab
71.4Aab
62.7Bb
21.8Bb
12.8BCcd
2.8Cc
15.6Cd
7.6Dd
72.2Aa
甬优8号 Yongyou 8
83.5Bc
71.2Aab
65.4ABab
15.3Dd
15.0Bc
2.3Cd
14.5De
8.7Bb
66.1Bb
常优1号 Changyou 1
84.1ABbc
75.6Aa
68.5Aa
19.7Cc
22.8Ab
4.5Aa
17.2Bc
7.9CDcd
71.3Aa
平均Mean
84.4
72.8
66.0
19.3
15.9
3.1
15.9
8.0
69.5
变异系数 CV(%)
0.8
2.8
3.8
14.5
29.9
32.4
7.1
6.0
4.0
籼稻 IR
黄华占 Huanghuazhan
79.2Cd
73.1Aab
53.6Ccd
8.9Ee
27.0Aa
2.4Ccd
16.1Cd
8.2BCc
57.4Dd
赣晚籼 Ganwanxian
78.6Cd
72.4Aab
54.8Cc
5.8Ff
8.6Ce
0.5De
17.2Bc
8.7Bb
56.2Dd
天优华占 Tianyouhuazhan
79.7Cd
74.5Aa
55.6Cc
8.6Ee
9.3Cde
0.8De
19.6Ab
9.4Aa
61.2Cc
岳优9113 Yueyou 9113
74.5De
69.2Ab
51.3Cd
25.4Aa
13.4BCc
3.4Bb
20.3Aa
9.3Aa
58.6CDd
平均 Mean
78.0
72.3
53.8
12.2
14.6
1.8
18.3
8.9
58.4
变异系数 CV(%)
3.0
3.1
3.5
73.3
58.5
77.0
10.8
6.3
3.7
2010, 上高 Shanggao
粳稻 JR
武育粳24 Wuyujing 24
83.1Aa
72.1Aa
64.5ABab
20.4Bb
11.3Cc
2.3Bb
16.6De
7.7Ef
68.6Bb
镇稻11 Zhendao 11
82.5Aa
70.4Aab
63.2ABb
22.3Aa
11.2Cc
2.5Bb
18.2Cc
8.3De
71.6ABa
甬优8号 Yongyou 8
80.3Bb
68.4ABbc
62.3Bb
14.2Cc
14.8BCbc
2.1Bb
15.1Ef
8.5CDde
61.8Cc
常优1号 Changyou 1
81.6ABab
71.6Aa
66.1Aa
22.6Aa
17.3Bb
3.9Aa
17.5CDd
7.6Ef
72.4Aa
平均 Mean
81.9
70.6
64.0
19.9
13.6
2.7
16.9
8.0
68.6
变异系数 CV(%)
1.5
2.3
2.6
19.7
21.6
30.2
7.9
5.5
7.0
籼稻 IR
黄华占 Huanghuazhan
71.6Dde
65.4BCd
51.4Cd
9.2Dd
22.8Aa
2.1Bb
17.2CDde
8.7CDcd
57.3Dd
赣晚籼 Ganwanxian
70.5De
63.3Cd
52.1Ccd
5.4Ee
11.1Cc
0.6Cd
16.9Dde
9.2ABb
55.2Dd
天优华占 Tianyouhuazhan
76.8Cc
66.2BCcd
54.1Cc
8.9Dd
13.5BCbc
1.2Cc
19.3Bb
9.6Aa
63.9Cc
五优308 Wuyou 308
72.3Dd
65.1BCcd
51.8Ccd
20.6Bb
3.4Dd
0.7Ccd
20.4Aa
8.9BCbc
55.9Dd
平均Mean
72.8
65.0
52.4
11.0
12.7
1.2
18.5
9.1
58.1
变异系数 CV(%)
3.8
1.9
2.3
60.0
63.0
59.6
9.1
4.3
6.9
2011, 上高 Shanggao
粳稻 JR
武育粳24 Wuyujing 24
84.9Aa
73.6ABab
68.2Aab
22.4Cc
12.5Bb
2.8Cc
17.0Cc
7.3Cd
69.5Cc
镇稻11 Zhendao 11
83.6Aab
72.2Bb
66.5Aab
24.5Aa
12.7Bb
3.1BCc
17.8Bb
8.1Bc
72.3Bb
甬优8号 Yongyou 8
84.5Aa
69.3Cc
64.3Ab
18.7Dd
19.3Aa
3.6Bb
14.8Ff
8.7Bb
64.8Dd
常优5号 Changyou 5
82.7ABbc
74.9Aa
70.1Aa
23.6Bb
19.1Aa
4.5Aa
16.9CDcd
8.6Bb
78.5Aa
平均 Mean
84.3
71.7
66.3
21.9
14.8
3.2
16.6
8.0
68.9
变异系数 CV(%)
1.2
3.3
3.7
11.4
24.0
21.3
10.5
7.8
8.0
籼稻 IR
黄华占 Huanghuazhan
74.8De
67.8CDcd
52.2Bc
10.1Ee
11.9Bb
1.2Dd
16.1DEde
8.4Bbc
59.3Ee
赣晚籼 Ganwanxian
75.6De
66.5Dd
53.7Bc
6.1Gg
13.6Bb
0.9Dd
15.7EFe
9.5Aa
57.1EFf
天优华占 Tianyouhuazhan
81.3BCc
74.3ABa
56.2Bc
8.6Ff
12.8Bb
1.1Dd
20.7Aa
9.8Aa
65.4Dd
五优308 Wuyou 308
79.6Cd
73.4ABab
55.6Bc
22.4Cc
3.6Cc
0.8Dd
21.2Aa
8.7Bb
56.8Ff
平均 Mean
77.8
70.5
54.4
11.8
10.5
1.0
18.4
9.1
59.7
变异系数 CV(%)
3.1
3.9
1.8
51.9
48.7
16.2
15.9
7.2
6.7
标以不同大小写字母的值分别在0.01和0.05水平上差异显著。 Values followed by different letters are significantly different at 0.05 (lowercase) and 0.01 (capital) levels, respectively. BRR: brown rice rate; MRR: milled rice rate; HRR: head rice rate; CGR: chalky grain rate; CR: chalkiness area; CD: chalkiness degree; AC: amylose content; PC: protein content; GC: gel consistency. JR: japonica rice; IR: indica rice.
表3 不同类型品种水稻稻米品质的差异 Table 3 Difference of rice quality in different types of cultivars
表6 不同类型品种水稻温光利用的差异(2011, 江西上高) Table 6 Difference of utilization of temperature and solar radiation in different types of cultivar (2011, Shanggao, Jiangxi)
表6 不同类型品种水稻温光利用的差异(2011, 江西上高) Table 6 Difference of utilization of temperature and solar radiation in different types of cultivar (2011, Shanggao, Jiangxi)
表7 Table 7 表7(Table 7)
表7 不同类型品种水稻群体茎蘖动态的差异 Table 7 Difference of number of stems and tillers in different types of cultivar (×104 hm-2)
品种 Cultivar
移栽期 Transplanting
N-n期 Critical leaf-age for productive tillers
拔节期 Jointing
抽穗期 Heading
乳熟期 Milky stage
成熟期Maturity
成穗率 Ratio of productive tillers (%)
粳稻JR
武育粳24 Wuyujing 24
126.0 Aa
326.2 Aa
440.2 Aa
346.5 Bb
330.5 Aa
321.0 Aa
72.9 Bc
镇稻11 Zhendao 11
117.0 Bb
330.3 Aa
434.2 Aa
372.0 Aa
337.5 Aa
324.0 Aa
74.6 Bbc
甬优8号Yongyou 8
94.5 Cc
259.8 Cc
324.0 Cc
272.3 Dd
265.9 Cc
253.5 Cc
78.2 Aa
常优5号Changyou 5
99.0 Bbc
286.5 Bb
373.5 Bb
312.5 Cc
297.9 Bb
280.5 Bb
75.1 Bb
平均 Mean
109.1
300.7
393.0
325.8
308.0
294.8
75.2
变异系数 CV(%)
13.6
16.6
14.0
6.2
10.7
11.5
2.9
籼稻IR
黄华占Huanghuazhan
86.4 Aa
348.9 Aa
489.3 Aa
409.5 Aa
351.0 Aa
335.6 Aa
68.6 Aa
赣晚籼 Ganwanxian
81.0 Bb
342.3 Aa
486.0 Aa
393.0 Bb
337.5 Bb
326.4 ABab
67.2 ABab
天优华占 Tianyouhuazhan
61.2 Cc
329.6 Bb
457.2 Bb
331.5 Dd
321.8 Cc
312.3 BCbc
68.3 Aa
五优308 Wuyou 308
66.6 Bbc
327.3 Bb
451.9 Bb
351.0 Cc
318.0 Cc
309.1 Cc
68.4 Aa
平均 Mean
73.8
337.2
471.1
371.3
332.1
320.9
68.12
变异系数 CV(%)
16.1
6.2
5.1
9.7
4.6
3.9
1.2
标以不同大小写字母的值分别在0.01和0.05水平上差异显著。 Values followed by different letters are significantly different at 0.05 (lowercase) and 0.01 (capital) probability levels, respectively.
表7 不同类型品种水稻群体茎蘖动态的差异 Table 7 Difference of number of stems and tillers in different types of cultivar (×104 hm-2)
图1 不同类型品种水稻群体叶面积指数和光合势动态T: 移栽期; N-n: 有效分蘖临界叶龄期; J: 拔节期; B: 孕穗期; H: 抽穗期; MK: 乳熟期; W: 腊熟期; M: 成熟期。JCR: 常规粳稻; JHR: 杂交粳稻; ICR: 常规籼稻; IHR: 杂交籼稻。Fig. 1 Dynamic changes of population leaf area index and photosynthetic potential in different types of cultivarT: transplanting; N-n: critical stage of productive tillering; J: jointing; B: booting; H: heading; MK: milky satge; W: waxy stage; M: maturity.JCR: japonicaconventional rice; JHR: japonica hybrid rice; ICR: indicaconventional rice; IHR: indica hybrid rice。
表8 Table 8 表8(Table 8)
表8 不同类型品种水稻抽穗期植株上三叶叶姿 Table 8 Characteristic of the top three leaves at heading in different types of cultivar
上三叶指标 Index of flag to 3rd leaf
粳稻 JR
变异系数 CV(%)
籼稻 IR
变异系数 CV(%)
粳稻较籼稻 JR compared with IR (±)
粳稻较籼稻 JR compared with IR (± %)
武运粳24 Wuyujing 24
甬优8号 Yongyou 8
平均 Mean
黄华占 Huanghuazhan
天优华占 Tianyou huazhan
平均Mean
剑叶Flag leaf
叶长LL (cm)
32.6
34.9
33.8
4.8
37.8
39.8
38.8
3.6
-5.1
-13.0**
叶基角LBA(°)
13.5
12.24
12.9
7.0
15.4
14.3
14.9
5.1
-2.0
-13.4**
叶张角ASL (°)
16.2
14.3
15.2
8.4
18.6
17.1
17.9
6.0
-2.6
-14.8**
披垂度DA (°)
2.6
2.1
2.4
16.2
3.2
2.8
3.0
10.3
-0.7
-21.6**
倒二叶2nd leaf
叶长LL (cm)
43.3
47.9
45.6
7.2
50.1
53.8
52.0
5.1
-6.4
-12.4**
叶基角LBA(°)
14.9
13.6
14.2
6.0
16.2
15.8
16.0
1.8
-1.8
-11.2**
叶张角ASL (°)
18.2
16.2
17.2
8.3
21.1
19.7
20.4
5.0
-3.2
-15.6**
披垂度DA (°)
3.4
2.6
3.0
19.3
4.9
3.9
4.4
16.8
-1.4
-31.9**
倒三叶3rd leaf
叶长LL (cm)
42.4
46.3
44.3
6.2
49.1
51.0
50.1
2.7
-5.8
-11.5*
叶基角LBA (°)
16.4
15.4
15.9
4.6
17.6
16.5
17.0
4.5
-1.1
-6.6*
叶张角ASL (°)
20.4
18.4
19.4
7.5
23.4
22.0
22.7
4.1
-3.3
-14.6**
披垂度DA (°)
4.0
3.0
3.5
20.8
5.8
5.6
5.7
3.0
-2.2
-38.5**
*,** 表示在0.05和0.01水平上差异显著和极显著。 LL: leaf length; LBA: leaf base angle; ASL: angle between stem and leaf; DA: dropping angle.*,**: Significant difference at 0.05 and 0.01 probability levels, respectively.
表8 不同类型品种水稻抽穗期植株上三叶叶姿 Table 8 Characteristic of the top three leaves at heading in different types of cultivar
表10 不同类型品种水稻抽穗期叶面积组成和粒叶比 Table 10 Components of population leaf area and grain-leaf ratio of heading in different types of cultivar
品种 Cultivar
叶面积指数Index of leaf area
有效叶面积率 Ratio of leaf area of productive tillers (%)
高效叶面积率 Ratio of leaf area from flag leaf to 3rd leaf from top of productive tillers (%)
粒叶比Grain-leaf ratio
经济系数 Economic coefficient
颖花/叶 Spikelets per cm2leaf area
实粒/叶 Filled grains per cm2 leaf area
粒重/叶 Grain weight (mg) per cm2 leaf area
粳稻JR
武育粳24 Wuyujing 24
7.5 Dd
95.7 BCc
74.7 Bbc
0.557 ABab
0.514 Aa
13.11 Aa
0.475 Aab
镇稻11 Zhendao 11
7.3 Ee
95.3 Cc
74.1 Bc
0.552 ABab
0.509 Aa
13.07 Aa
0.467 ABbc
甬优8号 Yongyou 8
8.0 BCbc
97.9 Aa
76.6 Aa
0.580 Aa
0.510 Aa
13.45 Aa
0.493 Aa
常优5号Changyou 5
7.9 Cc
96.6 Bb
75.2 Bb
0.565 ABab
0.506 Aa
13.20 Aa
0.477 Aab
平均Mean
7.7
96.4
75.1
0.563
0.510
13.15
0.478
变异系数 CV (%)
4.3
1.2
1.4
2.2
0.7
1.6
3.26
籼稻IR
黄华占 Huanghuazhan
7.9 Cc
91.1 DEd
68.8 De
0.512 Bb
0.426 Bb
9.37 BCcd
0.413 Ccd
赣晚籼 Ganwanxian
8.1 ABab
90.3 Ee
67.2 Ef
0.398 Cc
0.336 Cc
8.96 Cd
0.419 Cc
天优华占 Tianyouhuazhan
8.2 Aa
91.5 Dd
71.2 Cd
0.533 ABb
0.418 Bb
10.24 Bb
0.469 ABbc
五优308 Wuyou 308
8.0 BCbc
91.1 DEd
70.5 Cd
0.541 ABab
0.420 Bb
9.78 BCbc
0.438 Bc
平均Mean
8.1
91.0
69.4
0.496
0.400
9.59
0.435
变异系数 CV (%)
1.6
0.6
2.6
13.4
10.7
5.7
3.63
标以不同大小写字母的值分别在0.01和0.05水平上差异显著。 Values followed by different letters are significantly different at 0.05 (lowercase) and 0.01 (capital) probability levels, respectively. CV: coefficient of variation. JR: japonica rice; IR: indica rice.
表10 不同类型品种水稻抽穗期叶面积组成和粒叶比 Table 10 Components of population leaf area and grain-leaf ratio of heading in different types of cultivar
表11 不同类型品种水稻群体库充实度与实际充实量 Table 11 Filling rate and actual filling amount of population sink in different types of cultivar
品种 Cultivar
颖花量 Population spikelets (×104 hm-2)
常年千粒重 Normal 1000-grain weight (g)
最大库容量 The largest storage capacity (t hm-2)
充实度 Filling rate (%)
库实际充实量 Actual filling (t hm-2)
粳稻JR
武育粳24 Wuyujing 24
41310.4 ABbc
27.3
11.3 BCbc
86.0 Aab
9.7 BCb
镇稻11 Zhendao 11
39842.4 ABc
27.1
10.8 Cc
87.1 Aa
9.4 CDc
甬优8号 Yongyou 8
46196.0 Aab
27.5
12.7 Aa
83.4 ABbc
10.6 Aa
常优5号 Changyou 5
43072.8 Aabc
26.8
11.5 Bb
85.8 ABb
9.9 Bb
平均Mean
42605.4
27.2
11.6
85.6
9.9
变异系数 CV(%)
6.4
1.1
7.0
1.8
5.4
籼稻IR
黄华占 Huanghuazhan
40721.2 ABbc
23.4
9.5 Dd
79.8 CDde
7.6 Fe
赣晚籼 Ganwanxian
33697.5 Bd
27.6
9.3 Ee
80.6 BCcd
7.5 Fe
天优华占 Tianyouhuazhan
47691.0 Aa
26.3
12.5 Aa
72.6 DEef
9.1 Dc
五优308 Wuyou 308
45946.3 Aab
25.1
11.5 Bb
72.0 Ef
8.3 Ed
平均Mean
42014.0
25.6
10.7
76.8
8.1
变异系数 CV(%)
14.9
6.9
14.6
9.3
9.1
标以不同大小写字母的值分别在0.01和0.05水平上差异显著。 Values followed by different letters are significantly different at 0.05 (lowercase) and 0.01 (capital) probability levels, respectively. CV: coefficient of variation. JR: japonica rice; IR: indica rice.
表11 不同类型品种水稻群体库充实度与实际充实量 Table 11 Filling rate and actual filling amount of population sink in different types of cultivar
表12 不同类型品种水稻抽穗后根系及叶的相关指标 Table 12 The index of roots and leaves after heading in different types of cultivar
品种 Cultivar
成熟期 Maturity
叶面积衰减率 Leaf area decreasing (LAI d-1)
齐穗后不同时间段剑叶叶绿素降解速率 Chlorophyll degradation rate during various periods (day) in flag leaf after rice full heading (%)
根系干重Dry matter weight of roots (g hill-1)
根冠比Root-shoot ratio
10-20 d
20-30 d
30-40 d
粳稻JR
武育粳24 Wuyujing 24
12.35 Cc
0.132 Bb
0.066 Cc
9.60 Cc
25.50 Cc
17.97 Ee
镇稻11 Zhendao 11
11.13 Dd
0.135 ABb
0.065 Cc
9.20 Ccd
12.60 Ee
17.40 Ee
甬优8号Yongyou 8
14.56 Aa
0.156 Aa
0.068 Cc
7.30 De
10.63 Ee
26.93 Cc
常优5号 Changyou 5
13.42 Bb
0.143 ABb
0.067 Cc
8.23 CDde
10.70 Ee
28.90 Bb
平均 Mean
12.87
0.142
0.066
8.6
14.9
22.8
变异系数 CV(%)
11.40
7.6
2.1
11.9
12.3
16.1
籼稻IR
黄华占 Huanghuazhan
10.21 De
0.108 Dc
0.100 ABab
12.43 Bb
31.03 Bb
20.27 Dd
赣晚籼 Ganwanxian
9.12 Ef
0.112 CDc
0.104 Aa
15.77 Aa
36.33 Aa
12.77 Ff
天优华占Tianyouhuazhan
11.26 Dd
0.129 BCb
0.094 Bb
11.80 Bb
16.27 Dd
31.87 Aa
五优308 Wuyou 308
10.67 De
0.120 BCbc
0.096 ABb
11.57 Bb
18.00 Dd
31.93 Aa
平均Mean
10.32
0.117
0.098
12.9
25.4
24.2
变异系数 CV(%)
8.8
7.9
4.5
15.1
18.3
12.1
标以不同大小写字母的值分别在0.01和0.05水平上差异显著。 Values followed by different letters are significantly different at 0.05 (lowercase) and 0.01 (capital) probability levels, respectively. CV: coefficient of variation. JR: japonica rice; IR: indica rice.
表12 不同类型品种水稻抽穗后根系及叶的相关指标 Table 12 The index of roots and leaves after heading in different types of cultivar
Table 14 Culm diameter and culm wall thickness in different types of cultivar
品种 Cultivar
茎秆粗度 Culm diameter (cm)
茎壁厚度 Culm wall thickness (mm)
N1
N2
N3
N4
N1
N2
N3
N4
粳稻JR
武育粳24 Wuyujing 24
0.423 Dd
0.351 Dd
0.311 Dd
0.241 BCbc
1.01 Bb
0.91 Bb
0.84 Ab
0.71 Bc
镇稻11 Zhendao 11
0.476 Cc
0.413 Cc
0.344 Cc
0.259 Bb
1.04 ABb
0.94 ABb
0.87 Aab
0.75 ABbc
甬优8号 Yongyou 8
0.545 Aa
0.469 Aa
0.402 Aa
0.325 Aa
1.13 Aa
1.02 Aa
0.91 Aa
0.81 Aa
常优5号 Changyou 5
0.512 Bb
0.434 Bb
0.381 Bb
0.314 Aa
1.08 ABab
0.97 ABab
0.89 Aab
0.79 Aab
平均Mean
0.489
0.417
0.360
0.285
1.065
0.960
0.878
0.765
变异系数 CV(%)
10.7
11.9
11.2
14.4
4.9
4.9
3.4
5.8
籼稻IR
黄华占Huanghuazhan
0.386 Ee
0.312 Eef
0.252 Ffg
0.223 CDc
0.76 Cd
0.64 Cd
0.61 Bd
0.54 DEe
赣晚籼 Ganwanxian
0.374 Ee
0.304 Ef
0.244 Fg
0.201 Dd
0.64 De
0.52 De
0.50 Ce
0.48 Ef
天优华占Tianyouhuazhan
0.413 Dd
0.323 Ee
0.276 Ee
0.236 BCc
0.85 Cc
0.73 Cc
0.67 Bc
0.62 Cd
五优308 Wuyou 308
0.408 Dd
0.312 Eef
0.264 EFef
0.230 Cc
0.79 Ccd
0.71 Cc
0.64 Bcd
0.58 CDde
平均Mean
0.395
0.313
0.259
0.223
0.760
0.650
0.610
0.555
变异系数 CV(%)
4.7
2.5
5.4
6.9
11.6
14.6
12.3
10.8
Table 14 Culm diameter and culm wall thickness in different types of cultivar
N1-N4: denote the first internode to the fourth internode upward from the base, respectively. Values followed by different letters are significantly different at 0.05 (lowercase) and 0.01 (capital) probability levels, respectively. 高相继连续进行的综合生产力比较试验, 其中产量最高的粳稻品种为甬优8号, 最低的为武运粳24, 表明杂交粳稻在双季稻区种植较常规粳稻产量上有一定优势。同时, 近几年粳稻品种专题试验中, 部分粳稻品种产量达10.0 t hm-2以上, 其中2011年引进的甬优系列品系在上高进行比较时, 品系A26/F9250产量高达11.6 t hm-2, 可见晚粳高产潜力巨大。综合看来, 粳稻综合生产力显著高于籼稻, 但同时在研究过程中也看到了晚粳不足之处, 如虽然粳稻加工品质等性状较优, 但外观品质逊于籼稻, 所以双季稻区籼、粳稻生产力及其适应性问题, 还需要深入加倍研究。 3.2 双季晚粳生产力形成的主要生态生理特征以往已有较多研究报道了粳稻高产、稳产的相关生态生理特征[ 28, 29, 30], 但由于各地种植制度、栽培方式及水稻生长环境有较大差别, 得出结论不一。李旭毅等[ 25]认为粳稻品种每穗粒数多, 且其抽穗后干物质转运能力强, 籽粒灌浆好, 能实现较高的结实率, 因此晚粳在成都平原表现出较好的产量潜力; 黄山等[ 31]认为江西新建县引进的杂交晚粳较高的产量, 与其生育期长、生物量大及较大库容, 特别是较高的穗粒数有关; 笔者等[ 32]较系统研究总结了单季稻区轻简栽培条件下“籼改粳”生产优势及生态生理基础, 为新形势下江淮中下游单季稻区“籼改粳”提供了依据与支撑, 本文则通过在江西鄱阳、上高等地多年籼粳稻异地比较研究, 初步揭示了双季晚粳生产力及其相关的生理生态特征。 晚粳较当地晚籼适当推迟抽穗结实, 延长结实灌浆期与全生育期, 使双晚稻季的积温和光照利用率高于籼稻; 其群体茎蘖动态较籼稻平稳; 能适时够苗, 拔节期茎蘖数为最终穗数的1.4倍左右, 高峰苗后群体茎蘖下降平稳, 有效穗数较足, 最终成穗率高; 抽穗期晚粳稻株型较紧凑, 粒叶比高, 库源较协调。粳稻后期具有较强光合生产能力, 既能增加光合物质积累量, 又能协调茎鞘物质输出与运转, 以强源畅流, 促成群体籽粒充实度高, 最终籽粒产量较高; 晚粳能够适应相对较低气温, 不早衰, 同时群体抗倒伏能力较籼稻强, 故能维系支撑较大群体安全成熟。由于多种原因, 迄今对双季晚粳稻生产力及其形成的生态生理特征研究甚少, 本文报道的研究结果既可供同仁在实践中参考, 更期待引起更多方面对此加强研究与探讨。 3.3 提高双季晚粳生产力的技术途径及“籼改粳”原则我国绝大多数双季稻地区, 由于常年种植籼稻, 推广普及的是籼稻丰产技术与经验, 一旦“籼改粳”则缺乏用于指导实践的晚粳高产栽培技术, 因此启动与加强晚粳高产优质高效技术的研究与示范迫在眉睫。近年来, 从本课题组在江西进行的双季晚粳试验示范实践来看, 水稻精确定量栽培技术比较适用[ 33]。例如, 2011年在江西上高县曾家村6.77公顷连片晚粳高产示范方上, 应用精确定量化栽培方案[ 34], 创造了我国晚稻高产纪录, 经专家验收平均产量达10.4 t hm-2, 最高产量10.8 t hm-2。据近几年的研究, 已初步总结出了双季晚粳定量化高产栽培技术, 其中包括筛选与当地安全抽穗期相吻合的高产优质多抗粳稻品种、适期培育壮秧与大田密肥水耦合等关键定量技术, 并在江西上高、南昌、都昌、吉安等多地示范。 但实践表明, 发展双季晚粳生产存在着大量的开拓性问题亟待研究。科学地拓展双季晚粳生产, 首先必须研明“籼改粳”的适宜条件与区域范围, 做到“宜籼则籼, 宜粳则粳”。某地若发展晚粳, 必须通过品种筛选、栽培方式、适宜播期、壮秧培育、群体肥水协同调控、病虫草害防治及机械化作业等方面的配套研究, 获得比当地籼稻显著高产、优质、高效的适用集成技术与经验, 并通过进一步充实完善, 制定本土化的精确定量简化技术规程, 才能推而广之, 取得如期的发展效果。
4 结论在双季晚稻适宜种植粳稻地区, 晚粳较晚籼更能够充分高效地利用温光资源, 产量高、品质优、效益好, 综合生产力高。双季晚粳生产力形成的生理生态特征是, 较籼稻全生育期特别是结实期明显延长, 抽穗结实期能适应凉爽气候, 增加对温光资源利用, 能正常成熟; 后期有较强的光合生产能力, 增加了群体光合物质生产积累量, 源库协调性好, 库容总充实量高; 生育后期不早衰, 维持较强的根系和较大的茎鞘强度, 具有较好的群体抗倒伏能力。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
HorieT, ShiraiwaT, HommaK, KatsuraK, MaedaY. Can yields of lowland rice resume the increases that they showed in the 1980s?, 2005, 8: 259-274[本文引用:1][JCR: 0.802]
2
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000LingQ H. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000 (in Chinese)[本文引用:1]
3
FAO. Statistical Databases. Food and Agriculture Organization (FAO) of the United Nations, 2004[本文引用:1]
4
陈温福, 潘文博, 徐正进. 我国粳稻生产现状及发展趋势. , 2006, 37: 801-805ChenW F, PanW B, XuZ J. Current situation and trends in production of japonica rice in China. , 2006, 37: 801-805 (in Chinese with English abstract)[本文引用:1][CJCR: 0.55]
5
陈温福, 张龙步, 徐正进, 杨守仁. 北粳南引研究的进展与前景. , 1994, 25: 131-135ChenW F, ZhangL B, XuZ J, YangS R. The research advances of introducing japonica rice from the north to the south of China. , 1994, 25: 131-135 (in Chinese with English abstract)[本文引用:1][CJCR: 0.55]
6
孙广朝, 李金岐, 董县中, 郑明范, 齐浩然, 张宗保. 籼改粳低产原因与技术对策. , 2011, 17(2): 68-69SunG C, LiJ Q, DongX Z, ZhengM F, QiH R, ZhangZ B. The reason for low yield of indica to japonica modification and technical countermeasures. , 2011, 17(2): 68-69 (in Chinese)[本文引用:1][CJCR: 0.2433]
7
李成荃. 南方杂交粳稻的增产优势与合理利用. , 1991, (增刊): 6-9LiC Q. South of hybrid japonica rice in yield advantage and reasonable using. , 1991, (suppl): 6-9 (in Chinese)[本文引用:1]
8
黄发松, 王延春. 湘、鄂、赣发展晚粳稻生产的条件与建议. , 2010, 16(6): 67-68HuangF S, WangY C. The rice production and proposal about developing late japonica rice in Hunan, Hubei and Jiangxi. , 2010, 16(6): 67-68 (in Chinese)[本文引用:1][CJCR: 0.9745]
9
张洪程, 戴其根, 霍中洋, 许轲, 薛云龙, 吕贞龙. 偏迟熟水稻北移及配套高产栽培技术的研究. , 1996, 17(3): 51-56ZhangH C, DaiQ G, HuoZ Y, XuK, XueY L, LüZ L. Studies on the techniques for north toward acclimatization and high yielding of rice with rather late maturation in Jiangsu. , 1996, 17(3): 51-56 (in Chinese with English abstract)[本文引用:1]
10
张淑梅, 张建明, 李丁鲁, 李茂柏, 王慧, 朴钟泽, 邹德堂. 高抗性淀粉粳稻新品系稻米淀粉链长分布与主要品质特征差异. , 2009, 42: 2237-2243ZhangS M, ZhangJ M, LiD R, LiM B, WangH, PiaoZ Z, ZouD T. The difference between starch chain length distribution and main quality characteristics of high resistant starch lines of japonica rice. , 2009, 42: 2237-2243 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
11
马均, 马文波, 田彦华, 杨建昌, 周开达, 朱庆森. 重穗型水稻植株抗倒伏能力的研究. , 2004, 30: 143-148MaJ, MaW B, TianY H, YangJ C, ZhouK D, ZhuQ S. The culm lodging resistance of heavy panicle type of rice. , 2004, 30: 143-148 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
12
许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. , 2010, 43: 4796-4804XuD H, WangX Y, MaR R, YuS M, ZhuL F, OuyangY N, JinQ Y. Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou 6. , 2010, 43: 4796-4804 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
13
Prasad P V V, BooteK J, AllenL H, SheehyJ E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. , 2006, 95: 398-411[本文引用:1][JCR: 2.474]
14
MatsuiT, KobayasiK M, HasegawaT. Stability of rice pollination in the field under hot and dry conditions in the Riverina Region of New South Wales, Australia. , 2007, 10: 57-64[本文引用:1][JCR: 0.802]
15
曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. , 2008, 34: 2134-2142CaoY Y, DuanH, YangL N, WangZ Q, ZhouS C, YangJ C. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. , 2008, 34: 2134-2142 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
16
王静, 张成军, 陈国祥, 王萍, 施大伟, 吕川根. 低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响. , 2006, 20: 177-182WangJ, ZhangC J, ChenG X, WangP, ShiD W, LüC G. Effect of low temperature on photosynthetic pigments and thylakoid membrane fatty acid in flag leaves of rice at the milky stage. , 2006, 20: 177-182 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
17
李霞, 戴传超, 程睿, 陈婷, 焦德茂. 不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制. , 2006, 32: 76-83LiX, DaiC C, ChengR, ChenT, JiaoD M. Identification for cold tolerance at different growth stages in rice (Oryza sativa L. ) and physiological mechanism of differential cold tolerance. , 2006, 32: 76-83 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
18
李桦, 宋成艳, 丛万彪, 王桂玲. 粳稻品种抗纹枯病性鉴定与筛选. , 2000, 26(1): 19-21LiH, SongC Y, CongW B, WangG L. Japonica rice variety screening and identification of resistance to rice sheath blight. , 2000, 26(1): 19-21 (in Chinese with English abstract)[本文引用:1]
19
李余生, 朱镇, 张亚东, 赵凌, 王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析. , 2008, 34: 1728-1733LiY S, ZhuZ, ZhangY D, ZhaoL, WangC L. Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. , 2008, 34: 1728-1733 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
20
瀬古秀生, 佐本啓智, 鈴木嘉一郎. 水稲の倒伏に及ぼす二, 三栽培条件の影響(II). , 1959, 27: 173-176SekoH, SamotoK, SuzukiK. Lodging of rice plant in relation to several different cultural conditions (II). , 1959, 27: 173-176 (in Japanese with English abstract)[本文引用:1]
21
李杰, 张洪程, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同种植方式对超级稻植株抗倒伏能力的影响. , 2011, 44: 2234-2243LiJ, ZhangH C, GongJ L, ChangY, DaiQ G, HuoZ Y, XuK, WeiH Y. Effects of different planting methods on the culm lodging resistance of super rice. , 2011, 44: 2234-2243 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
22
王晓玲, 周治宝, 余传元, 雷建国, 王智权, 肖宇龙, 李马忠. 籼粳稻米食味品质差异的相关研究. , 2011, 33: 643-649WangX L, ZhouZ B, YuC Y, LeiJ G, WangZ Q, XiaoY L, LiM Z. A study on eating quality difference between indica and japonica rice. , 2011, 33: 643-649 (in Chinese with English abstract)[本文引用:1]
23
邵世志. N肥水平对不同类型水稻品种(组合)产量形成与吸N特性的若干影响的初步研究. , 2001. p5ShaoS Z. Preliminary Studies on Some Effects of Applying Level of N-Fertilizer on Yield Formation and N-Absorbing Character of Different Types Varieties of Rice. , 2001. p5 (in Chinese)[本文引用:1]
24
叶全宝. 不同水稻基因型对氮肥反应的差异及氮素利用效率的研究. , 2005. p5YeQ B. Study on Differences in Response of Rice Genotypes to Nitrogen Fertilization and Nitrogen Use Efficiency. , 2005. p5 (in Chinese)[本文引用:1]
25
李旭毅, 池忠志, 姜心禄, 郑家国. 成都平原两熟区籼粳稻品种籽粒灌浆特性. , 2012, 45: 3256-3264LiX Y, ChiZ Z, JiangX L, ZhengJ G. Analysis on grain filling characteristics of indica and japonica rice in rapeseed (wheat)—rice planting area in Chengdu Basin. , 2012, 45: 3256-3264 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
26
黄大山, 曹开蔚, 程飞虎, 张洪程, 张军, 张强. 一季粳稻作双季晚稻高产栽培技术. , 2010, 16(4): 40-42HuangD S, CaoK W, ChengF H, ZhangH C, ZhangJ, ZhangQ. The high-yielding cultivation techniques for single-cropping japonica rice as double-cropping late rice. , 2010, 16(4): 40-42 (in Chinese)[本文引用:1][CJCR: 0.9745]
27
董啸波, 霍中洋, 张洪程, 李国业, 曹开蔚, 程飞虎, 戴其根, 许轲, 魏海燕. 南方双季晚稻籼改粳优势及技术关键. , 2012, 18(1): 25-28DongX B, HuoZ Y, ZhangH C, LiG Y, CaoK W, ChengF H, DaiQ G, XuK, WeiH Y. The advantages and key technology of indica rice to japonica rice in southern double-cropping late rice area. , 2012, 18(1): 25-28 (in Chinese)[本文引用:1][CJCR: 0.9745]
28
张洪程, 郭保卫, 陈厚存, 周兴涛, 张军, 朱聪聪, 陈京都, 李桂云, 吴中华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 杨雄. 水稻有序摆、抛栽的生理生态特征及超高产形成机制. , 2013, 46: 463-475ZhangH C, GuoB W, ChenH C, ZhouX T, ZhangJ, ZhuC C, ChenJ D, LiG Y, WuZ H, DaiQ G, HuoZ Y, XuK, WeiH Y, GaoH, YangX. Eco-physiological characteristics and super high yield formation mechanism of ordered transplanting and optimized broadcasting rice. , 2013, 46: 463-475 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
29
顾伟, 李刚华, 杨从党, 王绍华, 凌启鸿, 丁艳锋. 特殊生态区水稻超高产生态特征研究. , 2009, 32(4): 1-6GuW, LiG H, YangC D, WangS H, LingQ H, DingY F. Studies on ecological traits of super high-yield rice in special eco-site. , 2009, 32(4): 1-6 (in Chinese with English abstract)[本文引用:1][CJCR: 0.916]
黄山, 何虎, 张卫星, 王志刚, 章秀福, 廖西元, 潘晓华. 不同粳稻品种在江西的生态适应性研究. , 2013, 35: 25-32HuangS, HeH, ZhangW X, WangZ G, ZhangX F, LiaoX Y, PanX H. Agronomic performance of different japonica rice varieties in different eco-regions in Jiangxi Province. , 2013, 35: 25-32 (in Chinese with English abstract)[本文引用:1]
32
张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. , 2013, 46: 686-704ZhangH C, ZhangJ, GongJ L, ChangY, LiM, GaoH, DaiQ G, HuoZ Y, XuK, WeiH Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”. , 2013, 46: 686-704 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
33
凌启鸿, 张洪程, 丁艳锋, 张益彬. 水稻高产技术的新发展——精确定量栽培. , 2005, (1): 3-7LingQ H, ZhangH C, DingY F, ZhangY B. Development of rice high-yielding techniques: precise and quantitative cultivation. , 2005, (1): 3-7 (in Chinese)[本文引用:1][CJCR: 0.9745]
34
张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. , 2010, 43: 2645-2660ZhangH C, WuG C, WuW G, DaiQ G, HuoZ Y, XuK, GaoH, WeiH Y, HuangX F, GongJ L. The SOI model of quantitative cultivation of super-high yielding rice. , 2010, 43: 2645-2660 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]