关键词:马铃薯; 连作; 干物质; 积累; 分配 Effects of Continuous Cropping on Dry Matter Accumulation and Distribution of Potato Plants in the Yellow River Irrigation Areas of Middle Gansu Province LIU Xing1, ZHANG Shu-Le1, LIU Guo-Feng1, QIU Hui-Zhen1,*, WANG Di2,3,*, ZHANG Jun-Lian2,3, SHEN Qi-Rong4 1College of Resources and Environmental Sciences / Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
2 Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Lanzhou 730070, China
3College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
4College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
Fund: AbstractThe Yellow River irrigation areas of middle Gansu Province is one of the major growing regions of processing potato in China and potato is often planted continuously by farmers eager to maximize profit, this practice results in the severe decline in tuber yield and also affects the healthy development of the potato industry locally. It is necessary to explore effects of continuous cropping on potato yield formation. The long-term field experiment contained five potato cropping treatments, corresponding to continuously plant potato crop over 1-5 years respectively, in addition, maize-potato rotation plot was used as the control, namely, non continuous potato cropping. We made an attempt to understand the effects of continuous cropping on potato tuber yield, dry matter accumulation and distribution, and accumulation and translocation of dry matter during post-anthesis. There were no statistical differences in tuber yield under the short-term continuous cropping compared with control, however, significant decline in tuber yield by 21.68%-75.67% occurred after three years of continuous cropping, which was mainly derived from the decline in the average fresh-weight of individual tuber. Dynamics of dry matter accumulation in the whole plant and tuber both showed the “S” curve feature, and the continuous cropping decreased the average rate and the duration in dry matter accumulation during quickly accumulative period of potato compared with control. The continuous cropping also affected dry matter distribution, especially increased dry matter distribution ratio in root compared with control. For tuber yield formation, the long-term continuous cropping increased the contribution of translocation of dry matter stored in vegetative organs during pre-anthesis, whereas decreased the contribution of direct assimilate accumulation in tuber during post-anthesis. In conclusion, the long-term continuous cropping leads to an imbalance of sink-source relationship of potato plants, which is the main cause of tuber yield decline.
Keyword:Potato; Continuous cropping; Dry matter; Accumulation; Distribution Show Figures Show Figures
表2 马铃薯田间农艺性状及产量构成要素的比较 Table 2 Comparison of agronomic traits of potato plants as well as its yield component factors
处理 Treatment
块茎产量 Tuber yield(kg hm-2)
株高 Plant height(cm)
茎粗 Stem diameter(mm)
单株结薯数 Tuber numberper plant
单株结薯重量 Tuber yield per plant (g)
平均单薯重量 Average fresh-weight of individual tuber (g)
RP
38839±2434 a
55.5±3.3 a
11.5±1.2 a
5.3±0.4 a
1009.55±76.52 a
212.66±22.03 ab
CP1
37703±739 a
53.1±1.3 a
11.0±0.5 a
5.1±1.4 a
1087.20±91.17 a
242.21±70.12 a
CP2
36513±1284 a
51.3±1.4 a
11.7±0.9 a
6.3±1.7 a
960.04±78.73 a
165.64±50.13 b
CP3
30419±2796 b
54.4±0.8 a
11.9±0.1 a
4.4±0.7 a
747.74±49.46 b
186.48±5.01 ab
CP4
9448±3191 c
40.0±5.6 b
8.9±1.6 b
5.7±1.5 a
343.65±71.81 c
60.23±14.89 c
CP5
10930±3752 c
40.4±1.2 b
8.8±1.4 b
5.4±0.9 a
352.67±105.75 c
72.26±5.67 c
线性相关分析 Linear correlation analysis ( n=18)
块茎产量 Tuber yield
R2=1.0000 P=0.0000
R2=0.8114 P<0.0001
R2=0.5284 P=0.0006
R2= -0.0097 P=0.6973
R2=0.8736 P<0.0001
R2=0.7262 P<0.0001
单株结薯重量 Tuber yield per plant
R2=0.8736 P<0.0001
R2=0.7425 P<0.0001
R2=0.6050 P=0.0001
R2=0.0021 P=0.8566
R2=1.0000 P=0.0000
R2=0.7231 P<0.0001
表中数据为3次重复的平均值±标准差, 同列的不同字母表示差异达5%显著水平。 Data in this Table are means± SD ( n=3), and values within the same column followed by different letters are significantly different at 5% proba-bility level.
表2 马铃薯田间农艺性状及产量构成要素的比较 Table 2 Comparison of agronomic traits of potato plants as well as its yield component factors
表3 收获后马铃薯植株不同器官干物质量比较 Table 3 Comparison of dry matter of different organs at potato harvest time
处理 Treatment
整株 Whole plant(g plant-1)
根 Root(g plant-1)
茎 Stem(g plant-1)
叶 Leaf(g plant-1)
块茎 Tuber(g plant-1)
根冠比 Ratio of root to shoot
收获指数 Harvest index
CK
297.44±62.97 a
2.90±0.31 a
12.71±3.51 a
20.09±2.48 bc
261.73±59.52 a
0.0894±0.0230 c
0.8822±0.0151 a
CP1
297.77±21.00 a
3.07±0.25 a
9.67±0.63 ab
26.31±2.22 a
258.72±22.07 a
0.0941±0.0165 bc
0.8677±0.0149 a
CP2
264.73±16.48 a
3.09±0.73 a
9.39±1.44 b
23.29±5.07 ab
228.96±11.09 a
0.0958±0.0229 bc
0.8629±0.0159 a
CP3
202.85±27.02 b
2.20±0.36 b
7.04±1.19 b
14.72±3.28 c
178.72±22.50 b
0.1027±0.0141 bc
0.8460±0.0638 a
CP4
89.43±6.69 c
1.59±0.12 b
3.59±1.13 c
8.71±2.55 d
75.54±4.38 c
0.1718±0.0773 ab
0.8330±0.0308 a
CP5
74.06±6.84 c
1.99±0.07 b
3.67±0.71 c
6.15±2.12 d
62.25±5.24 c
0.2181±0.0563 a
0.8259±0.0228 a
线性相关分析 Linear correlation analysis ( n=18)
块茎产量 Tuber yield
R2=0.8755 P<0.0001
R2=0.6694 P<0.0001
R2=0.7635 P<0.0001
R2=0.7463 P<0.0001
R2=0.8694 P<0.0001
R2= -0.5622 P=0.0003
R2=0.2366 P=0.0407
单株结薯重量 Tuber yield per plant
R2=0.9187 P<0.0001
R2=0.8210 P<0.0001
R2=0.8637 P<0.0001
R2=0.8890 P<0.0001
R2=0.9167 P<0.0001
R2= -0.6260 P<0.0001
R2=0.3258 P=0.0134
根冠比为根系干重与地上部茎和叶片的干重之和的比值, 收获指数为块茎干重与植株整株干重的比值。 Root dry matter amount divided by the aboveground dry matter amount is the ratio of root to shoot (RS); the harvest index is the ratio of dry matter amount of tuber to the whole plant (HI).
表3 收获后马铃薯植株不同器官干物质量比较 Table 3 Comparison of dry matter of different organs at potato harvest time
表4 不同连作年限对马铃薯整株干物质积累方程及其相关参数的影响 Table 4 Effects of continuous potato cropping on Logistic equations and their parameters of dry matter accumulation
处理 Treatment
方程 Equation
t0
t1
t2
Vmax
Vmean
Δ t
R2
P-value
CK
y= 326.92/(1+e4.61-0.078t)
59
42
76
6.37
5.58
34
0.9892
0.0011
CP1
y= 348.39/(1+e4.31-0.067t)
64
45
84
5.83
5.13
39
0.9755
0.0038
CP2
y= 304.02/(1+e(4.30-0.068t)
63
44
83
5.17
4.52
39
0.9859
0.0017
CP3
y= 213.57/(1+e4.70-0.083t)
57
41
72
4.43
3.91
31
0.9988
0.0001
CP4
y= 95.41/(1+e6.52-0.130t)
50
40
60
3.10
2.73
20
0.9817
0.0025
CP5
y= 80.91/(1+e4.08-0.095t)
43
29
57
1.92
1.68
28
0.9813
0.0026
t: 马铃薯出苗后的时间(d); y: 马铃薯整株的干物质积累量(g plant-1); t0: 马铃薯生育期内干物质积累最大速率出现的时间, t1和 t2: Logistic生长曲线的2个拐点, 即干物质快速积累期的起点和终点时间; Vmax: 马铃薯生育期内其干物质的最大增长速率(g plant-1 d-1); Vmean: 马铃薯干物质快速积累期的干物质平均增长速度(g plant-1 d-1); Δ t: 干物质快速积累期的持续时间。 t: time after emergence of potato plants (d); y: dry matter accumulation amount of whole plant (g plant-1); t0: time to the maximum rate of dry matter accumulation in potato growth period; t1 and t2: two inflexion points of Logistic equation, namely, the start point and end point of quickly accumulative period of dry matter in potato growth period, respectively; Vmax: the maximum increasing rate of dry matter accumulation (g plant-1 d-1); Vmean: average increasing rate of dry matter accumulation in quickly accumulative period (g plant-1 d-1); Δ t: the duration of quickly accumulative period of dry matter.
表4 不同连作年限对马铃薯整株干物质积累方程及其相关参数的影响 Table 4 Effects of continuous potato cropping on Logistic equations and their parameters of dry matter accumulation
表5 连作对马铃薯块茎干物质积累方程及其相关参数的影响 Table 5 Effects of continuous cropping on Logistic equations of dry matter accumulation of tuber and their parameters
处理 Treatment
方程 Equation
t0
t1
t2
Vmax
Vmean
Δ t
R2
P-value
CK
y= 282.61/(1+e5.85-0.093t)
63
48
78
6.51
5.78
30
0.9895
0.0105
CP1
y= 296.04/(1+e5.61-0.083t)
68
52
84
5.97
5.37
32
0.9695
0.0305
CP2
y= 250.49/(1+e5.92-0.089t)
67
52
82
5.41
4.87
30
0.9931
0.0069
CP3
y= 181.79/(1+e6.72-0.108t)
62
50
75
5.04
4.28
25
0.9992
0.0008
CP4
y= 79.41/(1+e6.23-0.100t)
62
50
75
1.99
1.76
25
0.9975
0.0025
CP5
y= 60.57/(1+e6.78-0.137t)
50
40
59
2.01
1.82
19
0.9971
0.0029
t: 马铃薯出苗后的天数(d); y: 马铃薯块茎的干物质积累量(g plant-1); t0: 马铃薯生育期内块茎干物质积累最大速率出现的时间; t1和 t2: Logistic生长曲线的2个拐点, 即块茎干物质在快速积累期的起点和终点时间; Vmax: 马铃薯生育期内块茎干物质的最大增长速率(g plant-1 d-1); Vmean: 马铃薯块茎干物质快速积累期的干物质平均增长速度(g plant-1 d-1); Δ t为块茎干物质快速积累期的持续时间。 t: days after emergence of potato plants (d); y: dry matter accumulation amount of potato tuber (g plant-1); t0: time to the maximum rate of tuber dry matter accumulation in potato growth period; t1 and t2: two inflexion points of Logistic equation, namely, the start point and end point of quickly accumulative period of tuber dry matter in potato growth period, respectively; Vmax: the maximum increasing rate of dry matter accumulation within potato tuber; Vmean: average increasing rate of tuber dry matter accumulation in quickly accumulative period (g plant-1 d-1); Δ t: the duration of quickly accumulative period of tuber dry matter.
表5 连作对马铃薯块茎干物质积累方程及其相关参数的影响 Table 5 Effects of continuous cropping on Logistic equations of dry matter accumulation of tuber and their parameters
表6 连作对马铃薯各器官间的干物质分配比例的影响 Table 6 Effects of continuous potato cropping on dry matter distribution in different organs at the whole growing stage (%)
生育时期 Growing stage
处理 Treatment
根 Root
茎 Stem
叶 Leaf
块茎 Tuber
苗期 Seedling
CK
16.28±3.75 a
8.79±1.23 a
76.45±10.24 a
—
CP1
17.06±0.89 a
9.13±1.57 a
74.67±8.75 a
—
CP2
16.03±2.75 a
9.78±1.14 a
75.42±11.24 a
—
CP3
16.86±3.03 a
9.84±0.45 a
75.88±5.83 a
—
CP4
18.13±2.67 a
9.78±1.12 a
73.76±7.34 a
—
CP5
18.73±4.60 a
9.35±0.50 a
73.42±8.65 a
—
初花期 Early flowering
CK
14.26±7.75 a
17.19±4.23 a
68.55±5.83 a
—
CP1
14.38±6.51 a
17.15±3.02 a
68.47±6.01 a
—
CP2
11.93±5.16 a
17.92±2.42 a
70.16±5.42 a
—
CP3
10.88±2.54 a
19.75±3.11 a
69.37±2.96 a
—
CP4
14.04±3.61 a
19.90±11.05 a
66.05±10.37 a
—
CP5
13.78±5.54 a
16.34±2.71 a
69.88±4.03 a
—
末花期 Late flowering
CK
3.87±1.24 b
10.85±3.86 a
24.19±12.98 a
61.09±7.30 a
CP1
3.49±0.96 b
13.50±3.82 a
18.57±6.99 a
64.44±9.54 a
CP2
5.76±2.23 ab
17.54±6.39 a
29.05±11.11 a
47.64±15.41 ab
CP3
5.41±1.61 ab
23.83±7.17 a
32.95±12.60 a
37.82±11.71 b
CP4
8.40±3.96 a
19.83±6.65 a
30.30±10.44 a
41.47±15.35 ab
CP5
7.22±3.21 a
16.90±7.32 a
31.76±20.78 a
44.13±12.36 ab
块茎膨大期 Tuber bulking
RP
1.29±0.03 b
3.82±0.08 b
12.28±2.51 a
82.60±3.11 a
CP1
1.94±0.62 ab
4.50±1.37 ab
16.12±4.70 a
77.44±6.28 a
CP2
1.80±0.72 ab
5.45±2.73 a
13.11±3.65 a
79.64±6.37 a
CP3
1.84±0.40 ab
6.49±2.82 a
14.20±6.36 a
77.46±9.75 a
CP4
2.62±0.80 a
6.09±1.26 a
13.29±2.35 a
78.00±3.87 a
CP5
2.58±0.12 a
8.63±4.10 a
13.90±7.78 a
74.89±12.58 a
淀粉积累期 Starch accumulation
CK
1.31±0.20 b
4.15±0.68 a
14.14±1.54 b
85.07±7.81 a
CP1
1.26±0.13 b
4.22±0.46 a
11.49±0.16 c
84.41±1.97 a
CP2
1.31±0.45 b
4.52±0.96 a
12.61±1.94 b
81.55±3.07 a
CP3
1.38±0.23 b
4.96±0.61 a
11.33±0.83 c
78.19±0.95 b
CP4
2.62±0.18 a
5.77±0.04 a
18.43±1.03 a
73.18±1.01 c
CP5
3.17±0.69 a
5.94±0.58 a
19.46±1.51 a
71.43±2.18 c
成熟期 Maturity
CK
0.98±0.50 b
4.14±2.01 a
6.63±2.26 a
88.22±1.51 a
CP1
1.06±0.28 b
3.31±1.46 a
8.86±3.36 a
86.77±1.49 a
CP2
1.19±0.42 ab
3.58±1.15 a
8.94±2.32 a
86.29±1.59 a
CP3
1.38±0.95 ab
4.73±3.93 a
9.73±8.54 a
84.60±6.38 a
CP4
2.17±1.36 a
4.40±2.72 a
10.14±5.22 a
83.30±3.08 a
CP5
3.03±1.53 a
5.25±2.92 a
9.13±4.18 a
82.59±2.28 a
表中数据为3次重复的平均值±标准差, 同列的不同字母表示在相同生育时期内不同连作年限间差异达5%显著水平。 Data in this Table are means± SD ( n= 3), and values within the same column followed by different letters are significantly different at 5% probability level among different years of continuous potato cropping in the same growing stage.
表6 连作对马铃薯各器官间的干物质分配比例的影响 Table 6 Effects of continuous potato cropping on dry matter distribution in different organs at the whole growing stage (%)
表7 连作对马铃薯花前贮藏干物质转运和花后光合同化产物积累的影响 Table 7 Effects of continuous cropping on translocation of dry matter stored before anthesis and accumulation of photosynthate after anthesis in potato plants
处理 Treatment
花前营养器官贮藏干物质 Dry matter stored in vegetative organs before anthesis
根 Root
茎Stem
叶Leaf
总计Total
TA (g plant-1)
TP (%)
TA (g plant-1)
TP (%)
TA (g plant-1)
TP (%)
TA (g plant-1)
TP (%)
CK
—
0
—
0
—
0
—
0
CP1
—
0
1.55±1.38
13.32±10.61
—
0
—
0
CP2
1.09±0.13
12.01±2.67
2.61±0.21
19.78±6.43
—
0
—
0
CP3
0.44±0.07
9.23±1.13
4.92±0.76
34.63±7.23
1.64±0.51
8.96±5.23
7.00±0.18
20.23±10.67
CP4
0.85±0.15
34.86±3.91
1.70±0.49
23.86±2.71
4.89±1.03
33.62±8.27
7.43±0.87
22.84±6.21
CP5
0.36±0.75
14.18±3.42
2.61±0.62
36.69±6.59
4.61±0.97
43.41±6.34
7.57±1.73
39.27±9.79
处理 Treatment
花后干物质积累量Accumulation of dry matter after anthesis
贡献率Contribution of dry matter translocation to tuber
块茎 Tuber (g plant-1)
光合同化 Assimilate (g plant-1)
花前贮藏干物质转运 Translocation of dry matter stored before anthesis (%)
花后同化产物输入 Accumulation of assimilate after anthesis (%)
CK
199.66±19.50 a
199.66±19.50 a
0
100.00
CP1
205.35±27.36 a
205.35±27.36 a
0
100.00
CP2
191.74±12.02 a
191.74±12.02 a
0
100.00
CP3
154.84±33.24 b
147.84±4.23 b
4.52
95.48
CP4
63.52±7.88 c
56.09±7.37 c
11.74
88.26
CP5
40.43±11.98 c
32.86±13.45 c
20.37
79.63
表中数据为3次重复的平均值±标准差, 同列的不同字母表示差异达5%显著水平。TA: 转运量; TP: 转运率。 Data in this Table are means± SD ( n= 3), and values within the same column followed by different letters are significantly different at 5% probability level. TA: translocation amount; TP: translocation proportion.
表7 连作对马铃薯花前贮藏干物质转运和花后光合同化产物积累的影响 Table 7 Effects of continuous cropping on translocation of dry matter stored before anthesis and accumulation of photosynthate after anthesis in potato plants
沈宝云, 余斌, 王文, 张俊莲, 王蒂. 腐植酸铵、有机肥、微生物肥配施在克服甘肃干旱地区马铃薯连作障碍上的应用研究. , 2011, (2): 68-70ShenB Y, YuB, WangW, ZhangJ L, WangD. Study on the application of humic ammonia, organic fertilizer, microbial ferti-li-zer to eliminate continuous cropping obstacles of potato in the arid regions of Gansu. , 2011, (2): 68-70 (in Chinese with English abstract)[本文引用:1][CJCR: 0.8]
[2]
沈宝云, 刘星, 王蒂, 孟品品, 张俊莲, 邱慧珍. 甘肃省中部沿黄灌区连作对马铃薯植株生理生态特性的影响. , 2013, 21: 689-699ShenB Y, LiuX, WangD, MengP P, ZhangJ L, QiuH Z. Effects of continuous cropping on potato eco-physiological characteristics in the Yellow River irrigation area of the central Gansu Province. , 2013, 21: 689-699 (in Chinese with English abstract)[本文引用:5][CJCR: 0.795]
[3]
余斌, 沈宝云, 王文, 邱慧珍, 刘鑫, 李朝周, 张俊莲, 王蒂. 连作障碍对干旱地区不同马铃薯品种的影响. , 2012, 47(4): 43-47YuB, ShenB Y, WangW, QiuH Z, LiuX, LiC Z, ZhangJ L, WangD. Effects of different potato varieties on preventing continuous cropping obstacle in the arid regions. , 2012, 47(4): 43-47 (in Chinese with English abstract)[本文引用:1][CJCR: 0.833]
[4]
孟品品, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣. 连作马铃薯根际土壤真菌种群结构及其生物效应. , 2012, 23: 3079-3086MengP P, LiuX, QiuH Z, ZhangW M, ZhangC H, WangD, ZhangJ L, ShenQ R. Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. , 2012, 23: 3079-3086 (in Chinese with English abstract)[本文引用:1]
[5]
牛秀群, 李金花, 张俊莲, 沈宝云, 柴兆祥, 王蒂. 甘肃省干旱灌区连作马铃薯根际土壤中镰刀菌的变化. , 2011, 20: 236-243NiuX C, LiJ H, ZhangJ L, ShenB Y, ChaiZ X, WangD. Changes of Fusarium in rhizosphere soil under potato continuous cropping systems in arid-irrigated area of Gansu Province. , 2011, 20: 236-243 (in Chinese with English abstract)[本文引用:1]
[6]
凌宁, 王秋君, 杨兴明, 徐阳春, 黄启为, 沈其荣. 根际施用微生物有机肥防止连作西瓜枯萎病研究. , 2009, 15: 1136-1141LingN, WangQ J, YangX M, XuY C, HuangQ W, ShenQ R. Control of Fusarium wilt of watermelon by nursery application of bio-organic fertilizer. , 2009, 15: 1136-1141 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[7]
卢建武, 邱慧珍, 张文明, 王蒂, 张俊莲, 张春红, 侯叔音. 半干旱雨氧农业区马铃薯干物质和钾素积累与分配特性. , 2013, 24: 423-430LuJ W, QiuH Z, ZhangW M, WangD, ZhangJ L, ZhangC H, HouS Y. Characteristics of dry matter and potassium accumulation and distribution in potato plant in semi-arid rainfed areas. , 2013, 24: 423-430 (in Chinese with English abstract)[本文引用:3][CJCR: 1.742]
[8]
王爱华, 张文芳, 黄冲平. 马铃薯干物质分配与器官建成的动态模拟研究. , 2005, 20: 356-362WangA H, ZhangW F, HuangC P. Study on the simulation of potato dry-matter distribution and its apparatuses formation. , 2005, 20: 356-362 (in Chinese with English abstract)[本文引用:1][JCR: 0.633]
[9]
叶义, 张吉立, 王宁, 刘振平, 王鹏. 常规施肥条件下重茬烤烟干物质积累及其产值分析. , 2011, (12): 77-79YeY, ZhangJ L, WangN, LiuZ P, WangP. Analysis of dry matter accumulation and production value of flue-cured tobacco by continuous cropping under conventional fertilization. , 2011, (12): 77-79 (in Chinese with English abstract)[本文引用:1]
[10]
顾怀胜, 郭亮, 曾中林, 王邦, 邱萍, 曹廷茂, 陈朝应. 烤烟连作障碍的形成机制及调控技术研究进展. , 2013, (1): 25-28GuH S, GuoL, ZengZ L, WangB, QiuP, CaoT M, ChenY C. Advances in formation mechanism of continuous cropping obstacles for tobacco planting and its regulation technology. , 2013, (1): 25-28 (in Chinese with English abstract)[本文引用:1][CJCR: 0.451]
[11]
王晶英, 郑桂萍, 张红燕, 李国兰. 连作大豆根冠比增大原因的研究. , 1997, 16: 136-142WangJ Y, ZhengG P, ZhangH Y, LiG L. Study on the reason of root-shoot ratio increasing of soybean on continuous cropping. , 1997, 16: 136-142 (in Chinese with English abstract)[本文引用:3]
[12]
许艳丽, 刘晓冰, 韩晓增, 李兆林, 王守宇, 何喜云, 于莉. 大豆连作对生长发育动态及产量的影响. , 1999, 32(suppl): 64-68XuY L, LiuX B, HanX Z, LiZ L, WangS Y, HeX Y, YuL. Effect of continuous-cropping on yield and growth development of soybean. , 1999, 32(suppl): 64-68 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[13]
吴正锋, 成波, 王才斌, 郑亚萍, 刘俊华, 陈殿绪, 高新华. 连作对花生幼苗生理特性及荚果产量的影响. , 2006, 35(1): 29-33WuZ F, ChengB, WangC B, ZhengY P, LiuJ H, ChenD X, GaoX H. Effect of continuous cropping on peanut seedling physiological characteristics and pod yield. , 2006, 35(1): 29-33 (in Chinese with English abstract)[本文引用:1]
[14]
万书波, 王才斌, 卢俊玲, 李光敏, 伦伟志, 吴正峰, 成波. 连作花生的生育特性研究. , 2007, (2): 32-36WanS B, WangC B, LuJ L, LiG M, LunW Z, WuZ F, ChengB. Study on the growth and development characters of continuous-cropping peanut. , 2007, (2): 32-36 (in Chinese with English abstract)[本文引用:1]
[15]
樊堂群, 王树兵, 姜淑庆, 成波, 李晔, 初长江, 王才斌. 连作对花生光合作用和干物质积累的影响. , 2007, 36(2): 35-37FanT Q, WangS B, JiangS Q, ChengB, LiY, ChuC J, WangC B. Effect of continuous cropping on photosynthesis and accumulation of dry matter in peanut. , 2007, 36(2): 35-37 (in Chinese with English abstract)[本文引用:1]
[16]
王小兵, 骆永明, 李振高, 刘五星, 何园球. 长期定位施肥对红壤地区连作花生生物学性状和土传病害发生率的影响. , 2011, 48: 725-730WangX B, LuoY M, LiZ G, LiuW X, HeY Q. Effects of long-term stationary fertilization experiment on incidence of soil-borne diseases and biological characteristics of peanut in continuous monocropping system in red soil area. , 2011, 48: 725-730 (in Chinese with English abstract)[本文引用:1][CJCR: 1.979]
[17]
黄玉茜, 韩立思, 韩晓日, 战秀梅, 杨劲峰, 蒋增. 辽宁风沙土区连作年限对花生光合特性和产量的影响. , 2011, 42: 438-442HuangY Q, HanL S, HanX R, ZhanX M, YangJ F, JiangZ. Effects of continuous cropping on yields and photosynthetic characteristics of peanuts in sand y soil region of Liaoning. , 2011, 42: 438-442 (in Chinese with English abstract)[本文引用:1]
[18]
SoltanpourP N. Accumulation of dry matter and N, P, K, by Russet Burbank, Oromonte and Red McClure potatoes. , 1969, 46: 111-119[本文引用:1]
[19]
KleinkkopfG E, WestermannD T, DwellerR B. Dry matter production and nitrogen utilization by six potato cultivars. , 1981, 73: 799-802[本文引用:1][JCR: 1.518]
[20]
Van HeemstH D J. The distribution of dry matter during growth of a potato crop. , 1986, 29: 55-66[本文引用:1][JCR: 0.558]
[21]
AlvaA K, HodgesT, BoydstonR A, CollinsH P. Dry matter and nitrogen accumulations and partitioning in two potato cultivars. , 2002, 25: 1621-1630[本文引用:1][JCR: 0.526]
[22]
SharifiM, ZebarthB J, HajabbasiM A, KalbasiM. Dry matter and nitrogen accumulation and root morphological characteristics of two clonal selections of Russet Norkotah potato as affected by nitrogen fertilization. , 2005, 28: 2243-2253[本文引用:1][JCR: 0.526]
[23]
SunL, GuL L, PengX L, LiuY Y, LiX Z, YanX F, YangX M. Effects of nitrogen fertilizer application time on dry matter accumulation and yield of Chinese potato variety KX13. , 2012, 55: 303-313[本文引用:1][JCR: 0.558]
[24]
VosJ. Split nitrogen application in potato: effects on accumulation of nitrogen and dry matter in the crop and on the soil nitrogen budget. ), 1999, 133: 263-274[本文引用:1]
[25]
MalikN J, DwellerR B, ThorntonM K, PavekJ J. Dry matter accumulation in potato clones under seasonal high temperature conditions in Pakistan. , 1992, 69: 667-676[本文引用:1]
[26]
LevyD. Varietal differences in the response of potatoes to repeated short periods of water stress in hot climates: 2. Tuber yield and dry matter accumulation and other tuber properties. , 1983, 26: 315-321[本文引用:1][JCR: 0.558]
[27]
IfenkweO P, AllenE J. Effect of row width and planting density on growth and yield of two maincrop potato varieties 1. plant morphology and dry-matter accumulation. ), 1978, 91: 265-278[本文引用:1]
[28]
GrayD. Some effects of variety, harvest date and plant spacing on tuber breakdown on canning, tuber dry matter content and cell surface area in the potato. , 1972, 15: 317-334[本文引用:1][JCR: 0.558]
[29]
屈会娟, 李金才, 沈学善, 魏凤珍, 王成雨, 郅胜军. 种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响. , 2009, 35: 124-131QuH J, LiJ C, ShenX S, WeiF Z, WangC Y, ZhiS J. Effects of plant density and seeding date on accumulation and translocation of dry matter and nitrogen in winter cultivar Lankao Aizao 8. , 2009, 35: 124-131 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[30]
马迎辉, 王玲敏, 叶优良, 朱云集. 栽培管理模式对冬小麦干物质积累、氮素吸收及产量的影响. , 2012, 20: 1282-1288MaY H, WangL M, YeY L, ZhuY J. Effects of different cultivation management modes on dry matter accumulation, nitrogen uptake and yield of winter wheat. , 2012, 20: 1282-1288 (in Chinese with English abstract)[本文引用:1][CJCR: 0.795]
[31]
高小丽, 孙健敏, 高金锋, 冯佰利, 王鹏科, 柴岩. 不同绿豆品种花后干物质积累与转运特性. , 2009, 35;1715-1721GaoX L, SunJ M, GaoJ F, FengB L, WangP K, ChaiY. Accumulation and transportation characteristics of dry matter after anthesis in different mung bean cultivars. , 2009, 35: 1715-1721 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[32]
杨恒山, 张玉芹, 徐寿军, 李国红, 高聚林, 王志刚. 超高产春玉米干物质及养分积累与转运特征. , 2012, 18: 315-323YangH S, ZhangY Q, XuS J, LiG H, GaoJ L, WangZ G. Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize. , 2012, 18;315-323 (in Chinese with English abstract)[本文引用:2][CJCR: 1.883]
[33]
王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊. 水氮调控对冬小麦根冠比和水分利用效率的影响研究. , 2013, 21: 282-289WangY Z, LiuX W, SunH Y, ZhangX Y, ZhangL R. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. , 2013, 21: 282-289 (in Chinese with English abstract)[本文引用:1][CJCR: 0.795]
[34]
PassiouraJ B. Roots and drought resistance. , 1983, 7: 265-280[本文引用:1]
[35]
门福义, 刘梦芸, 张志林. 马铃薯的产量形成与生育阶段. , 1980, (1): 72-81MenF Y, LiuM Y, ZhangZ L. Potato yield formation and its growing stages. , 1980, (1): 72-81 (in Chinese with English abstract)[本文引用:1]
[36]
MackownC T, Van SanfordD A, ZhangN. Wheat vegetative nitrogen compositional changes in response to reduced reproductive sink strength. , 1992, 99: 1469-1474[本文引用:1][JCR: 6.555]
[37]
黄智鸿, 王思远, 包岩, 梁煊赫, 孙刚, 申林, 曹洋, 吴春胜. 超高产玉米品种干物质积累与分配特点的研究. , 2007, 15(3): 95-98HuangZ H, WangS Y, BaoY, LiangH X, SunG, ShengL, CaoY, WuC S. Sutdies on dry matter accumulation and distribution characteristic in super high-yield maize. , 2007, 15(3): 95-98 (in Chinese with English abstract)[本文引用:1][CJCR: 0.965]
[38]
CassmanK G. Ecologiacal intensification of cereal production system: yield potential, soil quality, and precision agriculture. , 1999, 96: 5952-5959[本文引用:1][JCR: 9.737]
[39]
YeY L, WangG L, HuangY F, ZhuY J, MengQ F, ChenX P, ZhangF S, CuiZ L. Understand ing of physiological processes associated with yield-trait relationships in modern wheat varieties. , 2011, 124: 316-322[本文引用:1][JCR: 2.474]
[40]
杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. , 2006, 39: 1336-1345YangJ C, DuY, WuC F, LiuL J, WangZ Q, ZhuQ S. Growth and development characteristics of super-high-yielding mid- season japonica rice. , 2006, 39: 1336-1345 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]