关键词:甜高粱秸秆渣; 碱处理; 组成成分; 木质纤维素结构; 酶解糖化效率 Effects of Alkali Treatment on Component and Structure and Enzyme Saccharifying Efficiency of Sweet Sorghum Bagasse MA Qiang1,2, DUN Bao-Qing2,*, XI Ya-Jun1,*, WANG Zhi2,3, CHEN Chao-Ru1,2, LU Ming2, LI Gui-Ying2 1College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China
2National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3 State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, China
Fund: AbstractSweet sorghum variety M81 was used as the experimental material, the sweet sorghum bagasse (SSB) was treated under four conditions (lime at room temperature, lime with microwave treatment, lime with autoclave treatment and sodium hydroxide at room temperature) with the washed and untreated SSB as control. The changes of lignocellulose structure and the cellulase saccharifying efficiency of SSB under different conditions were investigated. The results showed that four treatments effectively changed the lignocellulose component of sweet sorghum bagasse, especially in the case pretreated by sodium hydroxide under room temperature for two weeks, and lime played an important role in hemicellulose dissolution too. Scanning electron microscopy (SEM) observation indicated that the lignocellulose structure was different in two treatments of lime with autoclave treatment and sodium hydroxide at room temperature. The surface of lignin in the treatment of lime and autoclave was eroded seriously and its fragments adhered to the surface of cellulose, but the internal fiber structure still arranged tightly; in the treatment of NaOH at room temperature the lignocellulose beam structure was swelled and degraded, and the cellulose fiber net appeared due to the surface component of lignin removed a lot and many small holes appeared. By using the four pretreated methods, the cellulose and hemicellulose of sweet sorghum bagasse were enzymatically saccharified, the concentrations of glucose and xylose increased 1.5, 2.1, 1.9, 4.2 times and 3.1, 5.0, 4.9, 2.4 times, respectively as compared with the control. The direct conversion rate and the relative conversion rate of cellulose and hemicellulose are different, but have a significant guiding function for the choose of treatment methods and the effect of comprehensive evaluation, in addition, also an instructive function for the breeding and cultivating of sweet sorghum with high yield and good energy productive factors in the practical production.
Keyword:Sweet sorghum straw bagasse; Alkali treatment; Component; Lignocellulose structure; Enzyme saccharifying efficiency Show Figures Show Figures
表1 各处理甜高粱渣木质纤维素的主要组分及干物质回收率 Table 1 Components of sweet sorghum bagasse and the recovery rate of the dry matter
预处理方式 Pretreatment
木质纤维素组分比例 Percentage of lignocellulose components (%)
干物质回收率 Recovery rate of DM
纤维素Cellulose
半纤维素Hemicellulose
木质素Lignin
灰分Ash
对照 CK
39.03±0.07 e
30.94±0.34 a
4.64±0.05 b
1.90±0.04 c
1.00
常温+石灰 Ca+RT
55.84±0.95 b
16.50±0.21 b
4.68±0.08 b
1.56±0.13 d
0.70
高温高压+石灰 Ca+AT
42.74±0.06 d
13.61±0.23 d
5.62±0.10 a
1.33±0.09 e
0.81
微波+石灰 Ca+MT
44.44±0.90 c
15.42±0.20 c
4.52±0.16 b
2.33±0.16 b
0.85
常温+NaOH Na+RT
73.77±1.46 a
9.14±0.17 e
2.04±0.12 c
4.58±0.08 a
0.49
Values followed by a different letter with in the same column are significantly different at P<0.05 using Duncan’s multiple range tests. RT: room temperature; MT: microwave treatment; AT: autoclave treatment; DM: dry matter. 同一列中标有不同小写字母的数据在0.05水平上差异显著。
表1 各处理甜高粱渣木质纤维素的主要组分及干物质回收率 Table 1 Components of sweet sorghum bagasse and the recovery rate of the dry matter
图1 以扫描电镜观察不同处理甜高粱渣的结构A: 没有经过预处理的甜高粱渣; B: 石灰(高温高压)预处理的甜高粱渣; C: 氢氧化钠预处理的甜高粱渣。Fig. 1 Observing the SSB’s lignocellulose structure by scanning electron microscopy (SEM)A: no pretreated SSB; B: SSB pretreated by lime under autoclave; C: SSB pretreated by NaOH at room temperature.
图2 各处理甜高粱渣酶解糖化过程葡萄糖、木糖浓度的变化缩写同表1。Abbreviations are the same as given in Table 1.Fig. 2 Changes of glucose and xylose concentrations in the SSB enzymatic hydrolysis process
图4 各处理甜高粱渣纤维素、半纤维素的相对转化率与真实转化率A: 为直接转化率; B: 为相对转化率。Fig. 4 The direct and relative conversion rate of cellulose and hemicelluloseA: direct conversion rate; B: relative conversion rate.
GomezL D, Steele-KingC G, McQueen-MasonS J. Sustainable liquid biofuels from biomass: the writing’s on the wall. , 2008, 178: 473-485[本文引用:1][JCR: 6.736]
[2]
王久臣, 戴琳, 田宜水, 秦世平. 中国生物质能产业发展现状及趋势分析. , 2007, 23(9): 276-282WangJ C, DaiL, TianY S, QinS P. Analysis of the development status and trends of biomass energy industry in China. , 2007, 23(9): 276-282 (in Chinese with English abstract)[本文引用:1][CJCR: 1.299]
[3]
AntonopoulouG. , Gavala H N, Skiadas I V, Angelopoulos K, Lyberatos G. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. , 2008, 99: 110-119[本文引用:1]
[4]
PanagiotopoulosI A, BakkerR R, deVrije T, KoukiosE G, Claassen P A M. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. , 2010, 35: 7738-7747[本文引用:1][JCR: 3.548]
[5]
吴秋平, 王永军, 姜文顺, 张吉旺, 刘鹏, 董树亭, 王空军. 甜高粱分蘖去留与糖产量及氮素利用的比较分析. , 2010, 36: 1950-1958WuQ P, WangY J, JiangW S, ZhangJ W, LiuP, DongS T, WangK J. Comparison of sugar yield and nitrogen utilization in tiller removing or remaining of sweet sorghum. , 2010, 36: 1950-1958 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[6]
SánchezÓ J, CardonaC A. Trends in biotechnological production of fuel ethanol from different feedstocks. , 2008, 99: 5270-5295[本文引用:1][JCR: 4.75]
[7]
唐三元, 席在星, 谢旗. 甜高梁在生物能源产业发展中的前景. , 2012, 2(2): 81-86TangS Y, XiZ X, XieQ. The prospect of Sweet Sorghum in bioenergy industry. , 2012, 2(2): 81-86 (in Chinese with English abstract)[本文引用:1]
[8]
MansfieldS D, MooneyC, SaddlerJ N. Substrate and enzyme characteristics that limit cellulose hydrolysis. , 1999, 15: 804-816[本文引用:1][JCR: 1.853]
[9]
Zhang Y H P, LyndL R. Toward an aggregated understand ing of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. , 2004, 88: 797-824[本文引用:1][JCR: 3.648]
[10]
ChundawatS P, VenkateshB, DaleB E. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. , 2007, 96: 219-231[本文引用:1][JCR: 3.648]
[11]
麻星星, 张栩, 谭天伟. 甜高粱渣不同温度稀酸预处理对酶解的影响. , 2009. pp69-74MaX X, ZhangX, TanT W. Effect of pretreatment temperature on enzymatic hydrolysis of sweet sorghum. In: Proceedings of The Biological Chemical Industry Academic, Technology Exchange Meeting, 2009. pp69-74 (in Chinese)[本文引用:1]
[12]
MarxS, NdabaB, ChiyanzuI, SchabortC. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. , 2014, 65: 145-150[本文引用:1][JCR: 2.975]
[13]
叶凯. 生物质能源甜高粱现代技术体系结构研究. , 2010, 9(17): 16-17YeK. The research of biomass energy technology on the sweet sorghum modern technical system structure. , 2010, 9(17): 16-17 (in Chinese with English abstract)[本文引用:1]
[14]
韩立朴, 马凤娇, 谢光辉, 刘金铜. 甜高粱生产要素特征、成本及能源效率分析. , 2012, 17(6): 56-59HanL P, MaF J, XieG H, LiuJ T. Analysis of sweet sorghum’s characterisitic of production factor, cost and energy efficiency. , 2012, 17(6): 56-59 (in Chinese with English abstract)[本文引用:1]
[15]
Heredia-OleaE, Pérez-CarrilloE, Serna-SaldívarS O. Production of ethanol from sweet sorghum bagasse pretreated with different chemical and physical processes and saccharified with fiber degrading enzymes. , 2013, 134: 386-389[本文引用:1][JCR: 4.75]
[16]
孙麟, 高慧俊, 宝力德. 不同的预处理方式对甜高粱秸秆纤维素酶降解效率的影响. , 2010, 26(9): 346-351SunL, GaoJ H, BaoL D. The influence of different pretreatment on the efficiency of the enzymatic degradation of the Sweet Sorghum straw cellulose. , 2010, 26(9): 346-351 (in Chinese with English abstract)[本文引用:1]
[17]
黎大爵, 廖馥荪. 甜高粱及其利用. 北京: 科学出版社, 1992LiD J, LiaoF S. Sweet Sorghum and Its Utilization. Beijing: Science Press, 1992 (in Chinese)[本文引用:1]
[18]
ChenB Y, ChenS W, WangH T. Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. , 2012, 39: 182-191[本文引用:1][JCR: 2.975]
Heredia-OleaE, Pérez-CarrilloE, Serna-SaldívarS O. Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology. , 2012, 119: 216-223[本文引用:2][JCR: 4.75]
[21]
Van Soest P J. Use of detergents in the analysis of fibrous feeds: II. A rapid method for the determination of fiber and lignin. , 1963, 46: 829-835[本文引用:1]
[22]
WuL, ArakaneM, IkeM, WadabM, TakaiT, GauM, TokuyasuK. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. , 2011, 102: 4793-4799[本文引用:1][JCR: 4.75]
[23]
ZhangY L, GaoX X, WangA H, ZhaoL X. Life-cycle assessment for Chinese fuel ethanol demonstration projects. , 2009, 6: 63-68[本文引用:1]
[24]
CaoW, SunC, LiuR, YinR, WuX. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibi-lity and ethanol production from sweet sorghum bagasse. , 2012, 111: 215-221[本文引用:1][JCR: 4.75]
[25]
ZhangJ, MaX, YuJ, ZhangX, TanT. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. , 2011, 102: 4585-4589[本文引用:1][JCR: 4.75]
[26]
KumarP, BarrettD M, DelwicheM J, StroeveP. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. , 2009, 48: 3713-3729[本文引用:1][JCR: 2.206]
[27]
TamakiY, MazzaG. Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: effects of extractives, particle size and crop species. , 2010, 31: 534-541[本文引用:1][JCR: 2.468]
[28]
TaherzadehM J, KarimiK. Pretreatment of lignocellulosic waster to improve ethanol and biogas production: a review. , 2008, 9: 1621-1651[本文引用:1][JCR: 2.464]
[29]
邱盼盼, 任天宝, 王风芹, 谢慧, 宋安东. 木质纤维原料蒸汽爆破——生物联合预处理及其生物脱毒研究进展. , 2013, 47(2): 23-28QiuP P, RenT B, WangF Q, XieH, SongA D. Research progress on steam explosion biological pretreatment of the lignocellulose and simultaneous bio-detoxification. , 2013, 47(2): 23-28 (in Chinese with English abstract)[本文引用:1]
[30]
SunF H, LiJ, YuanY X, YanZ Y, LiuX F. Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. , 2011, 65: 931-938[本文引用:1]
[31]
MerinoS T, CherryJ. Progress and challenges in enzyme deve-lopment for biomass utilization. , 2007, 108: 95-120[本文引用:1][JCR: 1.644]
[32]
RohowskyB, HäßlerT, GladisA, RemmeleE, SchiederD, FaulstichM. Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. , 2012, 102: 211-219[本文引用:1][JCR: 4.781]
[33]
陈维维, 再吐尼古丽·库尔班, 涂振东, 叶凯. 不同种植密度对甜高粱糖分积累及SS、SPS活性的影响. , 2013, 39: 1507-1513ChenW W, KuerbanZ, TuZ D, YeK. Effects of different planting densities on sugar accumulation and activities of sucrose synthase and sucrose phosphate synthase of sweet Sorghum bicolor (L. ) Moench. , 2013, 39: 1507-1513 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[34]
ZhaoY L, DolatA, SteinbergerY, WangX, OsmanA, XieG H. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. , 2009, 111: 55-64[本文引用:1][JCR: 2.474]