关键词:夏玉米; 种植密度; 茎秆维管束; 茎流 Effect of Plant Density on Microstructure of Stalk Vascular Bundle of Summer Maize (Zea maysL.) and Its Characteristics of Sap Flow FENG Hai-Juan1, ZHANG Shan-Ping1, MA Cun-Jin1, LIU Peng1,*, DONG Shu-Ting1, ZHAO Bin1, ZHANG Ji-Wang1, YANG Jin-Sheng2 1 State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
2 Shandong Denghai Seed-Breeding Co. Ltd., Laizhou 261448, China
Fund: AbstractImproving plant density is an important measure to get high yield of summer maize. Two varieties of summer maize with different density tolerances, Zhengdan 958 and Nongda 108, were used to study the effect of plant density on structure of vascular bundles of the third internode and its characteristics of sap flow under three plant densities. The results showed that the cross sectional area of stem and the amount and area of big, small vascular bundles in stalks decreased significantly with the increase of plant density, which resulted in the total number and area of vascular bundle decreased. Nongda 108 was more sensitive to plant density than Zhengdan 958. The sap flow rate and amount of sap during 8:00-17:00 decreased significantly with the increase of plant density, while the transport efficiency of stalk vascular bundle increased. There was a positive correlation between area of big vascular bundles and amount of sap flow during 8:00-17:00. The structure and function of stalk vascular bundles in Zhengdan 958 were superior to these in Nongda 108, it might be one of the reason that Zhengdan 958 with better density tolerance could get high yield.
表3 种植密度对第3茎节维管束面积的影响 Table 3 Effects of plant density on area of vascular bundles of the third internode
年份 Year
品种 Cultivar
密度Plant density (plant hm-2)
S1 (mm2)
S2 (mm2)
S01 (mm2)
S02 (mm2)
Stotal (mm2)
S0 (mm2)
Stotal/S0 (%)
2012
农大108 Nongda 108
45000
0.112 a
0.035 a
29.21 a
14.40 a
43.61 a
493.52 a
8.84 a
67500
0.094 b
0.028 b
23.57 b
10.34 b
33.91 b
393.68 a
8.61 a
90000
0.081 b
0.025 b
17.96 c
8.63 c
26.58 c
351.44 b
7.56 b
郑单958 Zhengdan 958
45000
0.097 a
0.031 a
26.05 a
11.35 a
44.31 a
459.59 a
9.64 a
67500
0.091 ab
0.022 b
24.31 b
8.70 b
33.01 b
426.45 a
7.74 b
90000
0.083 b
0.020 b
20.93 c
6.59 c
27.52 c
363.31 b
7.57 b
2013
农大108 Nongda 108
45000
0.106 a
0.031 a
24.66 a
12.87 a
37.31 a
470.80 a
7.93 a
67500
0.085 b
0.025 b
18.88 b
9.20 b
28.09 b
366.65 b
7.67 ab
90000
0.073 b
0.024 b
15.16 c
8.28 c
24.07 c
340.24 c
7.08 b
郑单958 Zhengdan 958
45000
0.093 a
0.027 a
27.70 a
11.85 a
39.57 a
426.62 a
9.27 a
67500
0.086 ab
0.022 b
21.16 b
9.04 b
29.53 b
418.61 a
7.05 b
90000
0.075 b
0.021 b
17.72 c
7.48 c
24.25 c
349.91 b
6.93 b
S1: 单个大维管束平均面积; S2: 单个小维管束平均面积; S01: 大维管束总面积; S02: 小维管束总面积; Stotal: 维管束总面积; S0: 第3茎节横截面积; Stotal/S0: 维管束总面积占茎秆横截面积的百分比。同列中标以不同小写字母的数值在0.05水平上差异显著。 S1: average area of single big Vb; S2: average area of single small Vb; S01: total area of big Vb; S02: total area of small Vb; Stotal: total area of Vb; S0: transection area of the third internode; Stotal/S0: the percentage of the total area of vascular bundle to stem cross-sectional area. Values within a column followed by a different letter are significantly different at 0.05 probability level.
表3 种植密度对第3茎节维管束面积的影响 Table 3 Effects of plant density on area of vascular bundles of the third internode
图5 不同品种茎流速率的日变化(8月26日, 晴)Fig. 5 The diurnal variation of sap flow rate of different cultivars (Aug. 26, sunny)
表4 Table 4 表4(Table 4)
表4 玉米8:00至17:00总茎流量、运输效率与维管束数目、面积的相关性分析 Table 4 Correlation coefficients of diurnal water consumption and transport efficiency with amount and area of vascular bundle
S01(mm2)
S02(mm2)
Stotal(mm2)
N1
N2
N0
8:00至17:00的总茎流量SA
0.957*
0.819
0.928
0.886
0.798
0.847
8:00至17:00的维管束运输效率VT
-0.259
-0.539
-0.342
0.127
0.393
0.273
S01: 大维管束总面积; S02: 小维管束总面积; Stotal: 维管束总面积; N1: 大维管束数目; N2: 小维管束数目; N0: 维管束总数目。*表示在0.05水平显著相关。 S01: total area of big Vb; S02: total area of small Vb; Stotal: total area of Vb; N1: number of big Vb; N2: number of small Vb; N0: number of total Vb; SA: the amount of sap flow from 8:00 to 17:00; VT: the transport efficiency of vascular bundle from 8:00 to 17:00.* stands for significance at 0.05 probability level.
表4 玉米8:00至17:00总茎流量、运输效率与维管束数目、面积的相关性分析 Table 4 Correlation coefficients of diurnal water consumption and transport efficiency with amount and area of vascular bundle
4 结论种植密度显著影响夏玉米的茎秆显微结构与茎流速率。随密度增加, 维管束数目与横截面积下降, 茎流速率及总茎流量变小。总茎流量与大维管束总面积呈显著正相关, 植株在较高密度下通过提高维管束的运输效率来对抗密度增加所造成的个体之间竞争的激化。密植后郑单958的维管束结构优于农大108, 表现出茎流速率、总茎流量及运输效率上的优势, 这可能是其密度增大后仍能获得高产的原因之一。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。
段民孝. 从农大108和郑单958中得到的玉米育种启示. , 2005, 13(4): 49-52DuanM X. Some advice on corn breeding obtained from the elite varieties of Nongda 10and Zhengdan 958. , 2005, 13(4): 49-52 (in Chinese with English abstract)[本文引用:1][CJCR: 0.965]
[2]
陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. , 2010, 36: 1153-1160ChenC Y, HouY H, SunR, ZhuP, DongZ Q, ZhaoM. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. , 2010, 36: 1153-1160 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[3]
赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. , 2006, 32: 1566-1573ZhaoM, LiJ G, ZhangB, DongZ Q, WangM Y. The compensatory mechanism in exploring crop production potential. , 2006, 32: 1566-1573 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[4]
李春奇, 王庭梁, 程相文, 曹诺遥, 李芸, 芦鹏, 李潮海. 种植密度对夏玉米穗位叶片解剖结构的影响. , 2011, 37: 2099-2105LiC Q, WangT L, ChengX W, CaoN Y, LiY, LuP, LiC H. Effects of plant density on anatomical structure of ear leaf in summer maize. , 2011, 37: 2099-2105 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[5]
王晓燕, 张洪生, 盖伟玲, 段梅堂, 姜雯. 种植密度对不同玉米品种产量及籽粒灌浆的影响. , 2011, (4): 36-38WangX Y, ZhangH S, GaiW L, DuanM T, JiangW. Effects of plant density on yield and kernel filling of different maize varieties. , 2011, (4): 36-38 (in Chinese with English abstract)[本文引用:1]
[6]
王庆成, 刘霞, 李宗新, 刘开昌. 种植密度对玉米种皮形态建成及胚乳淀粉粒发育的影响. , 2008, 41: 2506-2512WangQ C, LiuX, LiZ X, LiuK C. Effect of planting densities on morphogenesis of seed capsule and development of starch granule in maize endosperm. , 2008, 41: 2506-2512 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[7]
何启平, 董树亭, 高荣岐. 不同类型玉米品种果穗维管束的比较研究. , 2007, 33: 1187-1196HeQ P, DongS T, GaoR Q. Comparison of ear vascular bundles in different maize cultivars. , 2007, 33: 1187-1196 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[8]
王娜, 李凤海, 王志斌, 王宏伟, 吕香玲, 周宇飞, 史振声. 不同耐密型玉米品种茎秆性状对密度的响应及与倒伏的关系. , 2011, (3): 67-70WangN, LiF H, WangZ B, WangH W, LüX L, ZhouY F, ShiZ S. Response to plant density of stem characters of maize hybrids and its relationship to lodging. , 2011, (3): 67-70 (in Chinese with English abstract)[本文引用:1][CJCR: 0.6276]
[9]
李金才, 魏凤珍, 丁显萍. 小麦穗轴和小穗轴维管束系统及与穗部生产力关系的研究. , 1999, 25: 315-319LiJ C, WeiF Z, DingX P. Relationship between vascular bundle system of rachis and rachilla and ear productivity. , 1999, 25: 315-319 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[10]
徐正进, 陈温福, 曹洪任, 张龙步, 杨守仁. 水稻穗颈维管束与穗部性状关系的研究. , 1998, 24: 47-53XuZ J, ChenW F, CaoH R, ZhangL B, YangS R. Relationship between the characters of panicle and vascular bundle in neck-panicle of rice. , 1998, 24: 47-53 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[11]
刘仲发, 勾玲, 赵明, 张保军. 遮阴对玉米茎秆形态特征、穿刺强度及抗倒伏能力的影响. , 2011, 26(4): 91-96LiuZ F, GouL, ZhaoM, ZhangB J. Effects of shading on stalk morphological characteristics, rind penetration strength and lodging-resistance of maize. , 2011, 26(4): 91-96 (in Chinese with English abstract)[本文引用:1][CJCR: 0.951]
[12]
崔海岩, 靳立斌, 李波, 张吉旺, 赵斌, 董树亭, 刘鹏. 遮阴对夏玉米茎秆形态结构和倒伏的影响. , 2012, 45: 3497-3505CuiH Y, JinL B, LiB, ZhangJ W, ZhaoB, DongS T, LiuP. Effects of shading on stalks morphology, structure and lodging of summer maize in field. , 2012, 45: 3497-3505 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[13]
李宁, 李建民, 翟志席, 李召虎, 段留生. 化控技术对玉米植株抗倒伏性状、农艺性状及产量的影响. , 2010, 18(6): 38-42LiN, LiJ M, ZhaiZ X, LiZ H, DuanL S. Effects of chemical regulator on the lodging resistance traits, agricultural characters and yield of maize. , 2010, 18(6): 38-42 (in Chinese with English abstract)[本文引用:1][CJCR: 0.965]
[14]
陈尚洪, 陈红琳, 沈学善, 王昌桃, 张玉兰, 刘定辉. 密度和施氮量对丘陵区机播夏玉米产量及倒伏影响研究. , 2012, 25: 805-808ChenS H, ChenH L, ShenX S, WangC T, ZhangY L, LiuD H. Effects of planting density and nitrogen application on yield and lodging of mechanized sowing summer maize. , 2012, 25: 805-808 (in Chinese with English abstract)[本文引用:1]
[15]
SakurataniT. Improvement of the probe for measuring water flow rate in intact plants with the stem heat balance method. , 1984, 40: 273-277[本文引用:1]
[16]
BakerJ M, van Bavel C H M. Measurement of mass flow of water in the stems of herbaceous plants. , 1987, 10: 777-782[本文引用:1][JCR: 5.135]
[17]
SteinbergS L, van Bavel C H M, McFarland M J. A gauge to measure mass flow rate of sap in stems and trunks of woody plants. J Am Soc Hortic, 1989, 114: 466-472[本文引用:1][JCR: 31.027]
[18]
李会, 刘钰, 蔡甲冰, 毛晓敏. 夏玉米茎流速率和茎直径变化规律及其影响因素. , 2011, 27(10): 187-191LiH, LiuY, CaiJ B, MaoX M. Change of sap flow rate and stem diameter micro variation of summer maize and influenct factors. , 2011, 27(10): 187-191 (in Chinese with English abstract)[本文引用:2][CJCR: 1.299]
[19]
唐霞, 崔建垣, 岳祥飞, 王少昆, 岳广阳. 科尔沁沙地玉米茎流变化规律研究. , 2011, 31(2): 31-35TangX, CuiJ Y, YueX F, WangS K, YueG Y. Characteristics of maize sap flow in Horqin Sand y Land . , 2011, 31(2): 31-35 (in Chinese with English abstract)[本文引用:1][CJCR: 0.72]
[20]
岳广阳, 张铜会, 赵哈林, 牛丽, 刘新平, 黄刚. 科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征. , 2006, 26: 3205-3213YueG Y, ZhangT H, ZhaoH L, NiuL, LiuX P, HuangG. Cha-racteristics of sap flow and transpiration of Salix gordejevii and Caragana microphylla in Horqin Sand y Land , Northeast China. , 2006, 26: 3205-3213 (in Chinese with English abstract)[本文引用:1]
[21]
WestgateM E, LizasoJ, BatchelorW. Quantitative relationship between pollen-shed density and grain yield in maize. , 2003, 43: 934-942[本文引用:1][JCR: 1.513]
[22]
熊飞, 孔妤, 孟秀荣, 陆巍, 马守宝, 王忠. 小麦穗部和颖果维管束系统的发育解剖学研究. , 2009, 29: 93-99XiongF, KongY, MengX R, LuW, MaS B, WangZ. Study on vascular bundle system in spikes and caryopsis of wheat. Tritice, 2009, 29: 93-99 (in Chinese with English abstract)[本文引用:1]
[23]
裘昭峰, 方陈, 陈洪俭. 小麦节间的维管组织及其与单穗粒数的关系. , 1987, 13: 102-106QiuZ F, FangC, ChenH J. On the vascular tissue of wheat internodal and its relationship to the grain number per spike. , 1987, 13: 102-106[本文引用:1][CJCR: 1.667]
[24]
王铁固, 赵新亮, 马娟, 张怀胜, 陈士林. 种植密度对玉米产量及主要农艺性状的影响. , 2011, (23): 16-18WangT G, ZhaoX L, MJ, ZhangH S, ChenS L. Influence on main agronomic traits and yield of maize under different density. Guangdong, 2011, (23): 16-18 (in Chinese with English abstract)[本文引用:1]
[25]
周宇飞, 史振声, 吕德贵, 王艺陶, 王娜. 种植密度对不同耐密性春玉米基部茎节维管束及根系伤流的影响. , 2013, 33: 518-526ZhouY F, ShiZ S, LüD G, WangY T, WangN. Effects of planting densities on basal stem vascular bundles and root bleeding sap of different density-tolerant maize cultivars. Acta Bot Bore, 2013, 33: 518-526 (in Chinese with English abstract)[本文引用:1]
[26]
荆彦辉, 徐正进, 王健林. 不同田间配置方式对水稻穗颈组织的影响. , 2003, 34: 355-357JingY H, XuZ J, WangJ L. Effects of different field collocation patterns on spike neck tissue in rice. , 2003, 34: 355-357 (in Chinese with English abstract)[本文引用:1][CJCR: 0.55]
[27]
孙红春, 李文芹, 刘连涛, 张永江, 李存东. 不同水分条件下棉花主茎功能叶叶柄茎流速率的日变化规律. , 2012, 27(4): 218-222SunH C, LiW Q, LiuL T, ZhangY J, LiC D. The diurnal variation law of cotton’s main stem sap velocity at different moisture levels. , 2012, 27(4): 218-222 (in Chinese with English abstract)[本文引用:1][CJCR: 0.951]
[28]
李国臣, 于海业, 马成林, 王蕊. 作物茎流变化规律的分析及其在作物水分亏缺诊断中的应用. ), 2004, 34: 573-571LiG C, YuH Y, MaC L, WangR. Diurnal variation of plant stem sap flow and its application in plant water deficiency diagnosis. J), 2004, 34: 573-571 (in Chinese with English abstract)[本文引用:1]
[29]
刘永红, 杨勤, 何文铸, 柯国华. 花期干旱和灌溉条件下植物生长调节剂对玉米茎流和光合生理的影响. , 2009, 22: 1305-1309LiuY H, YangQ, HeW Z, KeG H. Effect of plant growth regulators on maize stem sap and photosynthesis under drought stress and irrigation at flowering stage. , 2009, 22: 1305-1309 (in Chinese with English abstract)[本文引用:1]
[30]
赵永玲, 刘钰, 蔡甲冰. 夏玉米茎流和茎直径变化规律及其关系分析. , 2010, 29(3): 24-28ZhaoY L, LiuY, CaiJ B. The movements and relationships between the stem diameter variation and sap flow for summer maize. , 2010, 29(3): 24-28 (in Chinese with English abstract)[本文引用:1][JCR: 1.126]
[31]
龚道枝, 王金平, 康绍忠, 胡笑涛, 张富仓, 李志军. 不同水分状况下桃树根茎液流变化规律研究. , 2001, 17(4): 34-38GongD Z, WangJ P, KangS Z, HuX T, ZhangF C, LiZ J. Variations of stem and root sap flow of peach tree under different water status. , 2001, 17(4): 34-38 (in Chinese with English abstract)[本文引用:1][CJCR: 1.299]