摘要空间配置是影响间作套种作物生长和产量构成的关键因素之一。本研究固定玉米-大豆套作带宽200 cm, 玉米采用宽窄行种植, 设置4个玉米窄行行距为20 cm (A1)、40 cm (A2)、60 cm (A3)和80 cm (A4)套作处理, 2个玉米和大豆净作对照处理, 研究行距配置对套作系统中玉米和大豆生物量、根系及产量的影响。结果表明, 套作大豆冠层光合有效辐射和红光/远红光比值均低于净作, 且随着玉米窄行的增加而降低。套作系统中大豆地上地下生物量、总根长、根表面积和根体积从第三节龄期(V3)到盛花期(R2)逐渐增加, 但随着玉米窄行的增加而降低。套作玉米地上地下生物量从抽雄期到成熟期逐渐增加, 根体积却逐渐降低, 但这些参数随玉米窄行的变宽而增加。玉米和大豆在带状套作系统中产量均低于净作, 且随玉米窄行的变宽, 玉米产量逐渐增加, 2012和2013两年最大值平均为6181 kg hm-2, 而大豆产量逐渐降低, 两年最大值平均为1434 kg hm-2, 产量变化与有效株数和粒数变化密切相关。此外, 玉米-大豆带状套作群体土地当量比(LER)大于1.3, 最大值出现在A2处理, 分别为1.59 (2012年)和1.61 (2013年), 且最大经济收益也出现在A2处理(2年每公顷平均收益为1.93万元)。因此, 合理的行距配置对玉米-大豆带状套作系统中作物的生长、产量构成和群体效益具有重要的作用。
关键词:玉米; 大豆; 套作; 空间配置; 土地当量比 Effects of Row Spacing on Crop Biomass, Root Morphology and Yield in Maize-Soybean Relay Strip Intercropping System YANG Feng, LOU Ying, LIAO Dun-Ping, GAO Ren-Cai, YONG Tai-Wen, WANG Xiao-Chun, LIU Wei-Guo, YANG Wen-Yu* College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
AbstractSpatial patterns of cropping directly affect crop growth and yields in intercropping systems. A two year field experiment was conducted in 2012-2013 to analyze the effects of different row spacing patterns in maize and soybean relay strip intercropping system at 2:2 maize-to-soybean on crop biomass, root morphology and yield. The treatments were six row spacing patterns including four maize planting patterns with the control of sole cropping of maize and soybean. The maize planting patterns were compound of wide row and narrow row lying: “180+20” cm, “160+40” cm, “140+60” cm, and “120+80” cm. Soybean was planted in the wide rows before the reproductive stage of maize. The row spacing of the sole cropping of maize and soybean was 70 cm. The biomass, total root length, root surface area and root volume of intercropped soybean increased from V3 to R2, and decreased with increasing the maize narrow-row spacing. The above- and below-ground biomass of intercropped maize increased from tasseling to maturity stages, whereas opposite results were found in root volume. In addition, the intercropped maize biomass and root volume increased with increasing maize narrow-row spacing. The yields of maize and soybean in intercropping condition were lower than those in monoculture. Yield of intercropped maize increased with increasing the maize narrow-row spacing, with an average of two year maximum values of 6181 kg ha-1. Contrary trends were observed in intercropped soybean, with an average maximum yield of 1434 kg ha-1. Crop grain yield was related to effective plants and grain numbers per plant in maize-soybean relay strip intercropping system. Total intercropping yields were higher than sole cropping yields of maize and soybean, and the land equivalent ratio (LER) of the intercropping system was above 1.3. The maximum LER appeared in “60+40” cm treatment, which was 1.59 and 1.61 in 2012 and 2013, respectively. Similar results were found in economic benefit, the average of maximum value in both years was 19.3 thousand Yuan per hectare. Therefore, optimum row spacing pattern plays an important role in improving crop growth and increasing yield in maize-soybean relay strip intercropping system.
Keyword:Maize; Soybean; Relay intercropping; Spatial pattern; Land equivalent ratio Show Figures Show Figures
图1 玉米-大豆带状套作及净作种植格局 实线和虚线分别代表玉米行和大豆行; 黑色实心圆和灰色实心圆分别代表单株玉米和大豆; (a)和(b)分别代表套作和净作配置。Fig. 1 Planting pattern arrangements of maize-soybean relay strip intercropping and monoculture Solid and dashed lines represent maize rows and soybean rows, respectively. Each solid circle represents one maize plant, and each solid grey circle represents one soybean plant. Panels (a) and (b) show the planting pattern arrangements of maize-soybean relay strip intercropping and monoculture, respectively.
玉米于2012年4月1日育苗, 4月9日移栽, 8月1日收获, 而大豆6月15日播种于玉米宽行。2013年玉米于3月30日育苗, 玉米4月9日移栽, 7月28日收获, 而大豆6月16播种于玉米宽行。玉米底肥为尿素37.5 kg hm-2、过磷酸钙600 kg hm-2 (12% P2O5)、氯化钾150 kg hm-2 (60% K2O), 而后分别于苗期、拔节期与大喇叭口期追施苗肥(尿素75 kg hm-2)、拔节肥(尿素150 kg hm-2)与攻苞肥(碳酸氢铵750 kg hm-2)。大豆免耕直播, 底肥配施尿素75 kg hm-2、过磷酸钙600 kg hm-2、氯化钾60 kg hm-2, 初花后追施尿素75 kg hm-2。除草、喷药等管理同大田。 1.3 测定项目与方法1.3.1 大豆冠层光环境 在玉米和大豆共生阶段, 于大豆V3期在晴天的10:30至14:00进行光合有效辐射(PAR)和光谱辐照强度的测定。测定PAR利用LI-1400光量子仪(美国LI-COR公司), 在A1~A4处理各个小区中间区域, 移动与LI-1400连接的LI-191SA探杆, 逐个记录在大豆冠层顶部5 cm高度从玉米宽行中按照玉豆间、大豆上方、大豆行间、大豆上方及玉豆间的PAR值, 以各位点的平均值作为大豆冠层的光合有效辐射。在各处理测定光强过程中同时记录玉米冠层光合有效辐射。按照李艳大等[12]方法计算透光率。 测完PAR后, 用便携式地物光谱仪(荷兰Avants公司生产的AvaField-1, 光谱范围200~1100 nm)测定大豆冠层的光谱辐照度, 方法同测定光合有效辐射, 探头垂直向上, 以玉米宽窄行平均值作为该观测点的光谱辐照度。选取红边区域655~665 nm和远红光区域725~735 nm光谱辐照度值, 按照Hertel等[13]方法计算红光/远红光比值(R/FR)。 1.3.2 玉米和大豆地上生物量 各取大豆和玉米样3次, 大豆取样时间分别在第三节龄期(V3)、第五节龄期(V5)与盛花期(R2)。玉米取样在种植大豆前1 d的抽雄期, 以及与大豆套作共生期的乳熟期和成熟期。连续取每个小区长势一致大豆5株, 玉米3株以备分析。将玉米、大豆植株地上部装入牛皮纸袋, 105℃杀青1 h, 70℃烘干至恒重, 分别称取玉米、大豆地上部分干物质重。 1.3.3 玉米和大豆根系形态与生物量 参考邹聪明等[14]和金剑等[15]的方法, 采用传统挖掘法, 根据玉米和大豆根系分布特点, 挖取以玉米植株为中心的长20 cm × 宽20 cm × 深20 cm的根土混合体, 以大豆植株为中心的长20 cm × 宽20 cm × 深20 cm的根土混合体。将根土混合体置60目筛中, 以清水冲洗, 将泥土冲洗干净并剔除杂质, 收集所有洗出的大豆根系使用爱普生Expression 10000XL扫描仪扫描根系, 并用WinRHIZO根系分析系统分析扫描图片, 计算出根长、根体积、根表面积; 采用排水法测定玉米根体积[16]。最终将玉米和大豆根系装于牛皮纸袋在105℃杀青1 h, 70℃烘干至恒重, 称取根生物量。 1.3.4 玉米和大豆产量 收获玉米、大豆时, 考查每个小区玉米果穗总数、大豆植株总数, 连续选取每个小区中间区域10株玉米和20株大豆植株考种并计算理论产量。 1.3.5 土地当量比(LER) 参考Zhang等方法[17], 土地当量比LER=YIM/YMM+YIS/YMS, 式中, YIM和YIS分别为套作玉米和大豆产量(kg hm-2); YMM和YMS分别为单作玉米和大豆产量(kg hm-2)。 1.4 数据分析采用Microsoft Excel 2003整理和汇总试验数据, 使用SPSS 19.0分析数据, 并用Origin 8.0制图。
图2 不同行距配置处理下大豆冠层透光率和红光与远红光比值变化 A1~A4为玉米大豆行距配置处理, 分别为A1 (180 cm + 20 cm; 宽行180 cm, 窄行20 cm)、A2 (160 cm + 40 cm)、A3 (140 cm + 60 cm)和A4 (120 cm + 80 cm)。MS为单作大豆处理。Fig. 2 Changes of the PAR transmittance and red/far-red ratio in soybean canopy under different row spacing patterns Maize-soybean intercropping planting patterns: (A1) “ 180 + 20” wide-narrow row planting, i.e. wide row of 180 cm and narrow row of 20 cm; (A2) “ 160 + 40” wide-narrow row planting; (A3) “ 140 + 60” wide-narrow row planting; (A4) “ 120 + 80” wide-narrow row planting. MS stands for monoculture soybean.
图3 不同行距配置下大豆地上和地下生物量变化 同一生育时期中, 不同小写字母表示处理间差异在0.05水平显著。V3、V5和R2分别代表大豆的第一节龄期、第二节龄期及盛花期。缩写同图2。Fig. 3 Aboveground and belowground biomass of soybean at different row spacing patterns in 2012 and 2013 Bars represented by a different small letters within each group in the same growth stage are significantly different at the 0.05 probability level. V3, V5, and R2 stand for the third trifoliolate, the fifth trifoliolate and full bloom, respectively. Abbreviations are the same as those given in Figure 2.
图4 不同生育期大豆根系性状 同一生育时期中, 不同小写字母表示处理间差异在0.05水平显著。缩写同图2与图3。Fig. 4 Soybean root traits in different developmental stages Bars represented by a different small letter within each group in the same growth stage are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Fig. 2 and Fig. 3.
图5 2012年与2013年不同时期玉米地上部生物量和根体积 同一生育时期中, 不同小写字母表示处理间差异在0.05水平显著。MM为单作玉米, 其他缩写同图2。Fig. 5 Aboveground biomass (g plant-1) and root volume (cm3 plant-1) of maize at different stages in 2012 and 2013 Bars represented by a different small letters within each group in the same growth stage are significantly different at the 0.05 probability level. MM stands for monoculture maize, other abbreviations are the same as those given in Figure 2.
表1 净套作下玉米和大豆产量 Table 1 Yields of maize and soybean in monoculture and relay intercropping conditions
处理 Treatment
2012
2013
产量 Yield (kg hm-2)
经济收益 Economic benefit (× 104 Yuan hm-2)
土地 当量比 LER
产量 Yield (kg hm-2)
经济收益 Economic benefit (× 104 Yuan hm-2)
土地 当量比 LER
玉米 Maize
大豆 Soybean
玉米 Maize
大豆 Soybean
A1
5044 d
1472 b
1.85
1.52
5099 c
1396 b
1.82
1.56
A2
5718 c
1399 b
1.96
1.59
5570 ab
1348 b
1.90
1.61
A3
6107 b
1082 c
1.88
1.49
5855 ab
1136 c
1.86
1.54
A4
6313 ab
819 d
1.79
1.38
6049 ab
730 d
1.70
1.35
MS
—
1993 a
1.00
—
—
1854 a
0.93
—
MM
6451 a
—
1.42
—
6311 a
—
1.39
—
Crop values based on market prices of 2.2 Yuan kg-1 for maize and 5.0 Yuan kg-1 for soybean. LER means land equivalent ratio. Values within a column followed by different letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Figures 2 and 5. 玉米和大豆按照市场价分别为每千克2.2元和5.0元, LER代表土地当量比, 不同小写字母表示处理间差异在0.05水平显著。缩写同图2和图5。
表1 净套作下玉米和大豆产量 Table 1 Yields of maize and soybean in monoculture and relay intercropping conditions
表2 Table 2 表2(Table 2)
表2 净套作下玉米和大豆产量构成因素 Table 2 Yield components of maize and soybean in monoculture and relay intercropping conditions
年份 Year
处理 Treatment
玉米 Maize
大豆 Soybean
有效株数 Effective plants (plant hm-2)
穗粒数 Grains per spike (grains spike-1)
百粒重 100-grain weight (g)
有效株数 Effective plants (plant hm-2)
单株粒数 Grains per plant (grains plant-1)
百粒重 100-grain weight (g)
2012
A1
46002 c
440.08 c
24.91 a
82004 b
97.05 b
18.61 a
A2
49669 b
459.11 b
25.10 a
79337 b
93.73 bc
18.80 a
A3
50003 b
489.17 a
24.97 a
63669 c
89.58 c
18.94 a
A4
50669 ab
496.95 a
25.07 a
53336 d
80.61 d
19.01 a
MS
—
—
—
90004 a
117.98 a
18.78 a
MM
52669 a
489.91 a
25.03 a
—
—
—
2013
A1
45691 b
440.08 b
25.04 a
75281 a
104.07 b
17.88 a
A2
48692 ab
459.10 b
24.96 a
69725 b
105.69 b
18.28 a
A3
48358 ab
489.17 a
25.01 a
63336 c
99.35 c
18.05 a
A4
48691 ab
496.95 a
24.89 a
59725 c
68.26 d
17.92 a
MS
—
—
—
74170 a
141.44 a
17.74 a
MM
50192 a
489.90 a
24.91 a
—
—
—
Values within a column followed by different letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Figures 2 and 5. 不同小写字母表示处理间差异在0.05水平显著。缩写同图2和图5。
表2 净套作下玉米和大豆产量构成因素 Table 2 Yield components of maize and soybean in monoculture and relay intercropping conditions
WilleyR. Intercropping: its importance and research needs: I. Competition and yield advantages. , 1979, 32: 1-10[本文引用:1]
[2]
Szumigalski AR, Van Acker R C. Nitrogen yield and land use efficiency in annual sole crops and intercrops. , 2006, 98: 1030-1040[本文引用:1][JCR: 1.518]
[3]
Willey RW. Resource use in intercropping systems. , 1990, 17: 215-231[本文引用:1]
[4]
Ghosh PK, Tripathi AK, Band yopadhyay KK, Manna MC. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. , 2009, 31: 43-50[本文引用:1][JCR: 2.8]
AmosséC, Jeuffroy MH, DavidC. Relay intercropping of legume cover crops in organic winter wheat: Effects on performance and resource availability. , 2013, 145: 78-87[本文引用:1][JCR: 2.474]
[8]
YangF, HuangS, Gao RC, Liu WG, Yong TW, Wang XC, Wu XL, Yang WY. Growth of soybean seedlings in relay strip intercropping system in relation to light quantity and red: far-red ratio. , 2014, 155: 245-253[本文引用:4][JCR: 2.474]
[9]
EcharteL, Maggiora AD, CerrudoD, Gonzalez VH, AbbateP, CerrudoA, Sadras VO, CalviñoP. Yield response to plant density of maize and sunflower intercropped with soybean. , 2011, 121: 423-429[本文引用:3][JCR: 2.474]
[10]
BorghiÉ, Crusciol C A C, Nascente A S, Mateus G P, Martins P O, Costa C. Effects of row spacing and intercrop on maize grain yield and forage production of palisade. , 2012, 63: 1106-1113[本文引用:2][JCR: 1.133]
[11]
陈延玲, 吴秋平, 陈晓超, 陈范骏, 张永杰, 李前, 袁力行, 米国华. 不同耐密性玉米品种的根系生长及其对种植密度的响应. , 2012, 18: 52-59Chen YL, Wu QP, Chen XC, Chen FJ, Zhang YJ, LiQ, Yuan LX, Mi GH. Root growth and its response to increasing planting density in different maize hybrids. , 2012, 18: 52-59 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[12]
李艳大, 汤亮, 张玉屏, 朱相成, 曹卫星, 朱艳. 水稻冠层光截获与叶面积和产量的关系. , 2010, 43: 3296-3305Li YD, TangL, Zhang YP, Zhu XC, Cao WX, ZhuY. Relationship of PAR interception of canopy to leaf area and yield in rice. , 2010, 43: 3296-3305 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[13]
HertelC, LeuchnerM, RötzerT, MenzelA. Assessing stand structure of beech and spruce from measured spectral radiation properties and modeled leaf biomass parameters. , 2012, 165: 82-91[本文引用:1]
[14]
邹聪明, 王国鑫, 胡小东, 张云兰, 薛兰兰, Anjum SA, 王龙昌. 秸秆覆盖对套作玉米苗期根系发育与生理特征的影响. , 2010, 18: 496-500Zou CM, Wang GX, Hu XD, Zhang YL, Xue LL, Anjum SA, Wang LC. Effect of straw mulching on root development and physiological characteristics of intercropped maize at seedling stage. , 2010, 18: 496-500 (in Chinese with English abstract)[本文引用:1][CJCR: 0.795]
[15]
金剑, 王光华, 刘晓冰, 李艳华, 陈雪丽, Herbert SJ. 东北黑土区高产大豆R5期根系分布特征. , 2007, 29: 266-271JinJ, Wang GH, Liu XB, Li YH, Chen XL, Herbert SJ. Characteristics of root distribution at R5 stage in high yielding soybean in black soil. , 2007, 29: 266-271 (in Chinese with English abstract)[本文引用:1][CJCR: 0.95]
[16]
李宗新, 陈源泉, 王庆成, 刘开昌, 高旺盛, 隋鹏. 高产栽培条件下种植密度对不同类型玉米品种根系时空分布动态的影响. , 2012, 38: 1286-1294Li ZX, Chen YQ, Wang QC, Liu KC, Gao WS, SuiP. Influence of planting density on root spatio-temporal distribution of different types of maize under high-yielding cultivation conditions. , 2012, 38: 1286-1294 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[17]
Zhang GG, Yang ZB, Dong ST. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. , 2011, 124: 66-73[本文引用:1][JCR: 2.474]
Maddonni GA, Otegui ME. Intra-specific competition in maize: early establishment of hierarchies among plants affects final kernel set. , 2004, 85: 1-13[本文引用:1][JCR: 2.474]
[20]
Liu TD, Song FB, Liu SQ, Zhu XC. Light interception and radiation use efficiency response to narrow-wide row planting patterns in maize. , 2012, 6: 506-513[本文引用:1][JCR: 1.632]
[21]
管建慧, 郭新宇, 刘洋, 刘克利, 王纪华, 郭小东. 不同密度处理下玉米根系干重空间分布动态的研究. , 2007, 15(4): 105-108Guan JH, Guo XY, LiuY, Liu KL, Wang JH, Guo XD. Study on dynamic variation of root dry weight space distribution on different densities of maize. , 2007, 15(4): 105-108 (in Chinese with English abstract)[本文引用:1][CJCR: 0.965]
[22]
GaoY, Duan AW, Sun JS, Li FS, Liu ZG, LiuH, Liu ZD. Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. , 2009, 111: 65-73[本文引用:1][JCR: 2.474]
[23]
MeadR, Willey RW. The concept of “Land Equivalent Ratio” and advantage in yields from intercropping. , 1980, 16: 217-228[本文引用:1][JCR: 1.621]
[24]
Aggarwal GC, Sidhu AS. Effect of irrigation and nitrogen on maize-cowpea fodder intercropping at Ludhiana, India: Advantages and intercrop competition. , 1988, 18: 177-184[本文引用:1][JCR: 2.474]