关键词:轮耕; 小麦-玉米两熟制; 耕层构造; 产量; 品质 Effects of Rotational Tillage on Tilth Soil Structure and Crop Yield and Quality in Maize-Wheat Cropping System NIE Liang-Peng1,3, GUO Li-Wei1, NIU Hai-Yan2, WEI Jie2, LI Zeng-Jia1, NING Tang-Yuan1,* 1State Key Laboratory of Crop Biology / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Key Laboratory of Crop Physiology and Ecology in Universities of Shandong Province, Shandong Agricultural University, Tai’an 271018, China
2 Tengzhou Agricultural Bureau, Tengzhou 277519, China
3Minquan Agricultural Bureau, Minquan 476800, China
AbstractIn a three-year field experiment from the wheat season of 2009 to the maize season of 2012 in North China., we compared the effects of six tillage systems (zero-tillage, subsoiling, and conventional tillage before wheat sowing; zero-tillage and subsoiling before maize sowing) on soil porosity, moisture content, and crop yield and quality. Compared with zero-tillage, subsoiling before maize sowing greatly increased the annual mean soil total porosity in 0-40 cm soil layer, and subsoiling or conventional tillage before wheat sowing was also in favor of improving soil total porosity in 0-40 cm layer. The interaction between tillage practices in wheat and maize seasons had the largest influence on soil porosity, and the tillage in maize season determined the soil non-capillary porosity. Subsoiling and conventional tillages in wheat season resulted in more water absorption at late wheat growth stage than zero-tillage; particularly, wheat yield in subsoiling was the highest with significant differences from those of zero-tillage and conventional tillage. Subsoiling in maize season had more water absorption at filling stage and yield promotion than zero-tillage. Meanwhile, subsoiling in maize season had a successive effect in the following wheat season. In an overview of yield and grain quality, subsoiling in both maize and wheat seasons was the most optimal tillage mode for wheat-maize cropping system in North China, followed by subsoiling in wheat season plus zero-tillage in maize season.
Keyword:Rotational tillage; Maize-wheat cropping system; Tilth soil structure; Yield; Grain quality Show Figures Show Figures
图1 不同处理表层土壤0~10 cm (A, B)、10~20 cm (C, D)、20~40 cm (E, F)土壤总孔隙度的周年变化 处理为全年小麦-玉米两季轮耕模式, 其中ZT为免耕, SS为深松, CT为传统翻耕。Fig. 1 Annual changes of soil porosity in 0-10 cm (A, B), 10-20 cm (C, D), and 20-40 cm (E, F) layer under different treatments Treatments are the whole year tillage patterns (wheat-maize) including zero-tillage (ZT), subsoiling (SS), and conventional tillage (CT).
表1 小麦-玉米种植制度中轮耕措施对土壤毛管孔隙度(CP)和非毛管孔隙度(NCP)的影响 Table 1 Effects of rotational tillage on soil capillary porosity (CP) and non-capillary porosity (NCP) in wheat-maize cropping system (%)
处理/变异来源 Treatment/variance source
0-10 cm
10-20 cm
20-40 cm
毛管孔隙度 CP
非毛管孔隙度 NCP
毛管孔隙度 CP
非毛管孔隙度 NCP
毛管孔隙度 CP
非毛管孔隙度 NCP
2010-2011
免耕-免耕 ZT-ZT
38.56 a
6.72 d
37.50 a
6.04 d
34.14 a
4.50 d
免耕-深松 ZT-SS
36.12 b
12.72 c
29.65 b
15.63 c
21.99 b
19.97 c
深松-免耕 SS-ZT
35.64 b
11.02 c
30.15 b
16.09 c
22.34 b
17.21 c
深松-深松 SS-SS
29.69 d
20.42 a
24.36 d
22.74 a
15.35 d
27.55 a
翻耕-免耕 CT-ZT
36.25 b
10.29 c
30.21 b
15.02 c
23.34 b
15.42 c
翻耕-深松 CT-SS
33.28 c
17.79 b
27.46 c
18.57 b
18.96 c
23.19 b
区组 Block
3.26
2.34
2.87
1.37
2.67
3.26
主区 Main plot
17.44*
16.38*
11.34
9.36
13.48
12.33
副区 Sub-plot
33.26*
39.67*
32.41*
38.26*
34.84*
33.17*
互作 Interaction
20.37*
22.14*
40.37*
27.68*
46.18*
35.88
误差 Error
3.21
2.24
3.54
3.36
3.37
3.49
2011-2012
免耕-免耕 ZT-ZT
37.88 a
7.01 d
35.98 a
7.55 d
33.75 a
4.76 d
免耕-深松 ZT-SS
36.24 b
10.47 c
28.54 b
17.68 c
22.04 b
17.54 c
深松-免耕 SS-ZT
35.21 b
11.34 c
29.13 b
16.05 c
22.41 b
16.28 c
深松-深松 SS-SS
28.34 d
20.49 a
24.45 d
20.81 a
15.44 d
26.48 a
翻耕-免耕 CT-ZT
36.57 b
13.95 c
31.86 b
16.05 c
27.43 b
16.10 c
翻耕-深松 CT-SS
32.49 c
18.87 b
27.67 c
18.66 b
19.15 c
23.00 b
区组 Block
3.42
2.48
2.96
1.43
2.51
3.41
主区 Main plot
16.38*
17.64*
12.29
10.24
12.77
13.42
副区 Sub-plot
32.17*
40.13*
33.68*
37.47*
33.76*
33.28*
互作 Interaction
21.65*
23.07*
39.28*
27.93*
47.37*
36.74
误差 Error
4.32
2.38
3.67
3.32
3.25
3.53
Treatments are the whole year tillage patterns (wheat-maize) including zero-tillage (ZT), subsoiling (SS), and conventional tillage (CT), and the data are measured values of soil capillary porosity and non-capillary porosity. Different letters after measured data indicate significant difference among treatments. The main plot and sub-plot in variance source indicate tillage in wheat and maize seasons, respectively. Data are the percentages over the total variance (effect). The asterisk (* ) indicates that the effect is significant at P< 0.05. 处理为全年小麦-玉米两季轮耕模式, 数据为土壤毛管或非毛管孔隙度, 数据后不同字母表示处理间达差异显著(P< 0.05)。变异来源, 主区为小麦季耕作, 副区为玉米季耕作, 互作为两季耕作交互效应; 数据为作用力(占总方差百分比), * 表示作用力(P< 0.05)在0.05水平上差异显著。
表1 小麦-玉米种植制度中轮耕措施对土壤毛管孔隙度(CP)和非毛管孔隙度(NCP)的影响 Table 1 Effects of rotational tillage on soil capillary porosity (CP) and non-capillary porosity (NCP) in wheat-maize cropping system (%)
表2 小麦-玉米种植制度中轮耕措施对收获期0~100 cm土层土壤含水量的影响 Table 2 Effects of rotational tillage on soil moisture content in 0-100 cm soil layers at harvest stage in wheat-maize cropping system (%)
生长季 Cropping season
处理 Treatment
土层 Soil layer
0-10 cm
10-20 cm
20-40 cm
40-60 cm
60-100 cm
2010-2011
小麦季 Wheat season
免耕-免耕 ZT-ZT
12.71± 0.26 a
15.34± 0.33 a
16.82± 0.26 a
17.66± 0.21 a
18.74± 0.18 a
免耕-深松 ZT-SS
12.84± 0.24 a
15.31± 0.31 a
16.71± 0.24 a
17.54± 0.26 a
18.66± 0.19 a
深松-免耕 SS-ZT
12.26± 0.31 a
13.47± 0.24 c
14.53± 0.19 c
15.21± 0.29 c
15.96± 0.14 c
深松-深松 SS-SS
12.12± 0.26 a
13.23± 0.22 c
14.46± 0.21 c
15.13± 0.20 c
15.78± 0.16 c
翻耕-免耕 CT-ZT
12.63± 0.22 a
14.60± 0.28 b
15.69± 0.27 b
16.43± 0.27 b
17.45± 0.21 b
翻耕-深松 CT-SS
12.54± 0.29 a
14.51± 0.26 b
15.45± 0.28 b
16.24± 0.27 b
17.26± 0.17 b
玉米季 Maize season
免耕-免耕 ZT-ZT
20.88± 0.35 a
20.79± 0. 39 a
19.70± 0.31 a
19.83± 0.27 a
20.54± 0.16 a
免耕-深松 ZT-SS
19.30± 0.33 b
17.88± 0.35 b
18.09± 0.33 b
18.16± 0.26 b
18.43± 0.18 b
深松-免耕 SS-ZT
20.26± 0.39 a
20.15± 0.37 a
19.02± 0.35 a
19.09± 0.21 a
19.67± 0.21 a
深松-深松 SS-SS
18.56± 0.32 b
17.13± 0.36 b
17.34± 0.31 b
17.36± 0.23 b
17.49± 0.17 b
翻耕-免耕 CT-ZT
20.48± 0.31 a
20.41± 0.32 a
19.29± 0.34 a
19.39± 0.26 a
20.01± 0.19 a
翻耕-深松 CT-SS
18.74± 0.34 b
17.76± 0.34 b
17.92± 0.36 b
17.95± 0.28 b
18.19± 0.16 b
2011-2012
小麦季 Wheat season
免耕-免耕 ZT-ZT
10.65± 0.37 a
13.76± 0.29 a
14.95± 0.24 a
15.78± 0.35 a
16.85± 0.24 a
免耕-深松 ZT-SS
10.77± 0.32 a
13.69± 0.26 a
14.81± 0.27 a
15.63± 0.33 a
16.68± 0.26 a
深松-免耕 SS-ZT
10.29± 0.29 a
11.83± 0.36 c
12.85± 0.26 c
13.82± 0.27 c
14.65± 0.28 c
深松-深松 SS-SS
10.17± 0.29 a
11.67± 0.31 c
12.67± 0.22 c
13.76± 0.26 c
14.54± 0.22 c
翻耕-免耕 CT-ZT
10.48± 0.33 a
12.93± 0.29 b
13.91± 0.29 b
14.74± 0.29 b
15.74± 0.19 b
翻耕-深松 CT-SS
10.41± 0.35 a
12.74± 0.28 b
13.68± 0.27 b
14.50± 0.51 b
15.56± 0.21 b
玉米季 Maize season
免耕-免耕 ZT-ZT
17.67± 0.34 a
18.57± 0.29 a
18.21± 0.23 a
18.34± 0.32 a
19.07± 0.24 a
免耕-深松 ZT-SS
16.24± 0.33 b
16.84± 0.34 b
16.56± 0.27 b
16.62± 0.26 b
16.92± 0.21 b
深松-免耕 SS-ZT
17.02± 0.38 a
17.89± 0.32 a
17.58± 0.24 a
17.67± 0.28 a
18.28± 0.18 a
深松-深松 SS-SS
15.52± 0.31 b
16.09± 0.31 b
15.82± 0.21 b
15.85± 0.24 b
16.01± 0.23 b
翻耕-免耕 CT-ZT
17.25± 0.32 a
18.18± 0.36 a
17.79± 0.28 a
17.92± 0.21 a
18.56± 0.21 a
翻耕-深松 CT-SS
15.69± 0.36 b
16.71± 0.33 b
15.46± 0.31 b
15.53± 0.26 b
15.77± 0.24 b
Treatments are the whole year tillage patterns (wheat-maize) including zero-tillage (ZT), subsoiling (SS), and conventional tillage (CT). Data are means ± SD over three replicates and different letters afterwards indicate significant difference among treatments in the same cropping season (P< 0.05). 处理为全年小麦-玉米两季轮耕模式, 其中ZT为免耕, SS为深松, CT为传统翻耕。数据为3次重复的平均值± 标准差, 数据后不同字母表示同一作物季中处理间达显著差异(P< 0.05)。
表2 小麦-玉米种植制度中轮耕措施对收获期0~100 cm土层土壤含水量的影响 Table 2 Effects of rotational tillage on soil moisture content in 0-100 cm soil layers at harvest stage in wheat-maize cropping system (%)
表3 小麦-玉米种植制度中轮耕措施对作物产量的影响 Table 3 Effects of rotational tillage on crop yield in wheat-maize cropping (kg hm-2)
处理/变异来源 Treatment/variance source
小麦产量 Wheat yield
玉米产量 Maize yield
周年产量 Total yield
2010-2011
免耕-免耕 ZT-ZT
6560.1 d
7245.9 d
13806.0 d
免耕-深松 ZT-SS
7425.9 c
8211.2 c
15637.1 c
深松-免耕 SS-ZT
8175.2 b
9452.8 b
17628.0 b
深松-深松 SS-SS
9457.2 a
10179.7 a
19636.9 a
翻耕-免耕 CT-ZT
7709.0 bc
7966.3 cd
15675.3 c
翻耕-深松 CT-SS
8141.8 bc
8646.4 bc
16788.2 bc
区组 Block
7.98
7.80
8.08
主区 Main plot
66.22* *
15.40*
71.89*
副区 Sub-plot
22.11*
76.32* *
18.89*
互作 Interaction
3.59*
0.38*
1.04* *
误差 Error
0.03
0.08
0.02
2011-2012
免耕-免耕 ZT-ZT
6609.7 d
7225.2 d
13834.9 d
免耕-深松 ZT-SS
7877.3 bc
8634.7 c
16512.0 c
深松-免耕 SS-ZT
8343.0 b
9687.4 b
18030.4 b
深松-深松 SS-SS
9743.2 a
10347.6 a
20090.8 a
翻耕-免耕 CT-ZT
7886.6 bc
7879.6 cd
15766.2 c
翻耕-深松 CT-SS
8165.1 b
8852.5 bc
17017.6 bc
区组 Block
7.63
7.00
7.55
主区 Main plot
59.16* *
21.94*
65.48*
副区 Sub-plot
26.28*
68.95* *
24.76*
互作 Interaction
6.82*
2.01*
2.12* *
误差 Error
0.04
0.07
0.03
Treatments are the whole year tillage patterns (wheat-maize) including zero-tillage (ZT), subsoiling (SS), and conventional tillage (CT). Different letters after measured data indicate significant difference among treatments. The main plot and sub-plot in variance source indicate tillage in wheat and maize seasons, respectively. Data are the percentages over the total variance (effect). The asterisk (* ) indicates that the effect is significant at P< 0.05. 处理为全年小麦-玉米两季轮耕模式, 数据后不同字母表示处理间达显著差异(P< 0.05)。变异来源, 主区为小麦季耕作, 副区为玉米季耕作, 互作为两季耕作交互效应; 数据为作用力(占总方差百分比), * 表示作用力在0.05水平上差异显著。
表3 小麦-玉米种植制度中轮耕措施对作物产量的影响 Table 3 Effects of rotational tillage on crop yield in wheat-maize cropping (kg hm-2)
表4 小麦-玉米种植制度中轮耕措施对小麦品质的影响 Table 4 Effects of rotational tillage on wheat grain quality in wheat-maize cropping system
处理 Treatment
2010-2011
2011-2012
蛋白质 Protein (%)
油分 Oil (%)
淀粉 Starch (%)
容重 Test weight (g L-1)
蛋白质 Protein (%)
油分 Oil (%)
淀粉 Starch (%)
容重 Test weight (g L-1)
免耕-免耕 ZT-ZT
13.18 c
1.82 b
64.8 c
762 c
13.12 c
1.81 b
64.7 c
754 c
免耕-深松 ZT-SS
13.46 b
1.87 b
65.4 bc
769 bc
13.46 b
1.85 b
65.1 bc
766 bc
深松-免耕 SS-ZT
13.70 a
2.21 a
66.7 a
783 a
13.69 a
2.20 a
66.7 a
779 a
深松-深松 SS-SS
13.78 a
2.34 a
67.3 a
786 a
13.79 a
2.34 a
67.4 a
782 a
翻耕-免耕 CT-ZT
13.56 b
1.89 b
65.4 bc
770 b
13.55 b
1.88 b
65.2 bc
767 b
翻耕-深松 CT-SS
13.65 ab
1.91 b
65.8 b
776 ab
13.62 ab
1.92 b
65.9 b
769 ab
Treatments are the whole year tillage patterns (wheat-maize) including zero-tillage (ZT), subsoiling (SS), and conventional tillage (CT). Different letters after values indicate significant difference among treatments in the same cropping season (P< 0.05). 处理为全年小麦-玉米两季轮耕模式, 其中ZT为免耕, SS为深松, CT为传统翻耕, 数据后不同字母表示同一作物季中处理间达显著差异(P< 0.05)。
表4 小麦-玉米种植制度中轮耕措施对小麦品质的影响 Table 4 Effects of rotational tillage on wheat grain quality in wheat-maize cropping system
表5 小麦-玉米种植制度中轮耕措施对玉米品质的影响 Table 5 Effects of rotational tillage on maize grain quality in wheat-maize cropping system (%)
处理 Treatment
2010-2011
2011-2012
蛋白质 Protein
油分 Oil
淀粉 Starch
直链淀粉 Amylose
支链淀粉 Amylopectin
蛋白质 Protein
油分 Oil
淀粉 Starch
直链淀粉 Amylose
支链淀粉 Amylopectin
免耕-免耕 ZT-ZT
6.83 c
3.73 b
52.12 c
16.52 b
35.60 c
6.79 c
3.66 b
52.07 c
16.50 b
35.57 c
免耕-深松 ZT-SS
7.51 b
4.44 a
60.23 a
18.95 a
41.28 ab
7.54 b
4.45 a
60.34 a
19.02 a
41.32 a
深松-免耕 SS-ZT
7.49 b
4.27 a
60.34 a
18.99 a
41.35 ab
7.51 b
4.31 a
60.50 a
19.03 a
41.47 a
深松-深松 SS-SS
8.09 a
4.87 a
62.78 a
19.11 a
43.67 a
8.11 a
4.92 a
62.87 a
19.15 a
43.72 a
翻耕-免耕 CT-ZT
7.23 bc
3.98 ab
56.86 b
17.75 ab
39.11 b
7.22 bc
3.96 ab
56.83 b
17.76 ab
39.07 b
翻耕-深松 CT-SS
7.67 ab
4.75 a
61.49 a
19.03 a
42.46 a
7.69 ab
4.77 a
61.55 a
19.06 a
42.49 a
Treatments are the whole year tillage patterns (wheat-maize) including zero-tillage (ZT), subsoiling (SS), and conventional tillage (CT). Different letters after values indicate significant difference among treatments in the same cropping season (P< 0.05). 处理为全年小麦-玉米两季轮耕模式, 其中ZT为免耕, SS为深松, CT为传统翻耕, 数据后不同字母表示同一作物季中处理间达显著差异(P< 0.05)。
表5 小麦-玉米种植制度中轮耕措施对玉米品质的影响 Table 5 Effects of rotational tillage on maize grain quality in wheat-maize cropping system (%)
Wang XB, Cai DX, Hoogmoed WB, OenemaO, Perdok UD. Potential effect of conservation tillage on sustainable land use: a review of global long-term studies. Pedosphere, 2006, 16: 587-595[本文引用:2][JCR: 1.232][CJCR: 0.8103]
[2]
FengY, NingT, LiZ, HanB, HanH, LiY, SunT, ZhangX. Effects of tillage practices and rate of nitrogen fertilization on crop yield and soil carbon and nitrogen. Plant Soil Environ, 2014, 60: 100-104[本文引用:1][JCR: 1.113]
[3]
SchullerP, WallingD, SepulvedaA, CastilloA, PinoI. Changes in soil erosion associated with the shift from conventional tillage to a no-tillage system, documented using (CS)-C-137 measurements. Soil Till Res, 2007, 94: 183-192[本文引用:1][JCR: 2.367]
[4]
WangX, WuH, DaiK, ZhangD, FengZ, ZhaoQ, WuX, JinK, CaiD, OenemaO, HoogmoedW. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res, 2012, 132: 106-116[本文引用:3][JCR: 2.474]
[5]
ZhangH, LalR, ZhaoX, XueJ, ChenF, SparksD. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Adv Agron, 2014, 124: 1-36[本文引用:1][JCR: 5.06]
[6]
TianS, NingT, ZhaoH, WangB, LiN, HanH, LiZ, ChiS. Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China Plain. PloS One, 2012, 7: e51206[本文引用:2][JCR: 3.73]
IzumiY, YoshidaT, IijimaM. Effects of subsoiling to the non-tilled field of wheat-soybean rotation on the root system development, water uptake, and yield. Plant Prod Sci, 2009, 12: 327-335[本文引用:1][JCR: 0.802]
[10]
MartinezI, PratC, OvalleC, del PozoA, StolpeN, ZagalE. Subsoiling improves conservation tillage in cereal production of severely degraded Alfisols under Mediterranean climate. Geoderma, 2012, 189: 10-17[本文引用:1][JCR: 2.345]
[11]
TangY, WuX, LiC, WuC, MaX, HuangG. Long-term effect of year-round tillage patterns on yield and grain quality of wheat. Plant Prod Sci, 2013, 16: 365-373[本文引用:1][JCR: 0.802]
HuH, NingT, LiZ, HanH, ZhangZ, QinS, ZhengY. Coupling effects of urea types and subsoiling on nitrogen-water use and yield of different varieties of maize in northern China. Field Crops Res, 2013, 142: 85-94[本文引用:1][JCR: 2.474]
DerpschR, Franzluebbers AJ, Duiker SW, Reicosky DC, KoellerK, FriedrichT, Sturny WG, SaJ C M, WeissK. Why do we need to stand ardize no-tillage research?Soil Till Res, 2014, 137: 16-22[本文引用:1][JCR: 2.367]
何照范. 粮油籽粒品质及其分析技术. 北京: 农业出版社, 1985 He ZF. Analysis Technique for Grain Quality of Cereals and Oils. Beijing: Agriculture Press, 1985 (in Chinese)[本文引用:1]
[21]
霍志军. 田间试验与生物统计. 北京: 中国农业大学出版社, 2007. pp 88-105 Huo ZJ. Biological Statistics in Field Experiment. Beijing: China Agricultural University Press, 2007. pp 88-105(in Chinese)[本文引用:1]
侯贤清, 李荣, 韩清芳, 贾志宽, 王维, 杨宝平, 王俊鹏, 聂俊峰, 李永平. 轮耕对宁南旱区土壤理化性状和旱地小麦产量的影响. 土壤学报, 2012, 49: 592-598 Hou XQ, LiR, Han QF, Jia ZK, WangW, Yang BP, Wang JP, Nie JF, Li YP. Effects of different patterns of rotational tillage on soil physical and chemical properties and the influence of dryland wheat production in Ning-Nan arid regions. Acta Pedol Sin, 2012, 49: 592-598 (in Chinese with English abstract)[本文引用:1][CJCR: 1.979]
[24]
JozefaciukG, MuranyiA, Szatanik-KlocA, FarkasC, GyuriczaC. Changes of surface, fine pore and variable charge properties of a brown soil under various tillage practices. Soil Till Res, 2001, 59: 127-135[本文引用:1][JCR: 2.367]
LampurlanesJ, AngasP, Cantero-MartinezC. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crops Res, 2001, 69: 27-40[本文引用:1][JCR: 2.474]
Huang GB, ChaiQ, Feng FX, Yu AZ. Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L. ) in arid northwest China. J Integr Agric, 2012, 11: 1286-1296[本文引用:1]