删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

考虑系统不确定性的高超声速飞行器容错控制*

本站小编 Free考研考试/2021-12-25

随着科学技术的快速发展与进步,人们对控制系统的安全性、可靠性及可维护性要求越来越高,因此控制系统越来越趋向于大型化和复杂化。众所周知,故障对于任何一个系统来说都是不可避免的,尤其对于复杂系统而言,一旦故障发生,就可能造成重大损失。而容错控制的目的就是当发生故障时,虽然某些性能出现了降级,但整个闭环系统仍然可以稳定运行,并且具有可以接受的性能指标。作为一门新兴的交叉学科,容错控制为提高复杂动态系统的可靠性和安全性开辟了一条新的途径[1-2]
由于实际工程中被控对象的动态特性一般难以用精确的数学模型来描述,存在不确定性和外部干扰,因此在容错控制系统设计中同时考虑系统的容错性和鲁棒性具有重要意义。鲁棒容错控制能够在被控对象具有不确定性的情况下,依然保证闭环系统的联立镇定和完整性,并且系统的性能指标能够达到设计要求。文献[3]针对航空发动机,设计了基于特征结构配置方法的容错控制系统,但没有考虑输入矩阵不确定性的影响。文献[4]采用基于滑模观测器的控制方法对航天器的飞轮故障进行了鲁棒容错控制。文献[5-6]利用自适应理论设计了高超声速飞行器的鲁棒容错控制器,但无论是自适应理论还是基于观测器的方法实质上都属于主动容错控制,需要对故障进行实时准确的检测,因此其应用具有一定的局限性。由于H指标既考虑了自身参数摄动的影响,又刻画了抗外界扰动的能力,因此基于H指标的容错控制方法也得到了广泛的研究。文献[7]利用Riccati方程来求解鲁棒容错控制器,求得的控制器不仅能够保证闭环系统的渐近稳定性,还保证了H性能,但在Riccati方程的求解过程中缺乏有效的方法来确定待定参数的最佳值,这给控制器设计带来了很大的保守性。文献[8]利用结构H和旋翼状态反馈(Rotor State Feedback,RSF)控制理论对旋翼的传感器故障进行了鲁棒容错控制。随着线性矩阵不等式(Linear Matrix Inequality,LMI)技术的发展,利用LMI来解决鲁棒H容错控制问题成为发展趋势[9-15],其核心是寻找一个闭环系统的二次型Lyapunov函数,从而保证系统具有渐近稳定性,为了方便计算需要对所有的系统状态使用不同的Lyapunov变量,这会导致控制器的求解变为非凸优化。针对该问题,文献[9-11]对所有的故障情况采用同一种Lyapunov变量,显然由此得到的控制器具有较大的保守性;文献[12-15]利用扩展LMI技术,引入松弛变量,使得Lyapunov变量和系统矩阵解耦,但松弛变量的引入在增加设计自由度的同时也会增加LMI维数。
本文针对一类考虑执行器失效故障和范数有界参数不确定的系统,研究了一种用来求解鲁棒H容错跟踪控制问题的迭代LMI算法。该算法允许所有的系统状态使用不同的Lyapunov变量,从而降低了控制系统的保守性;相比于扩展LMI技术,该算法无需额外增加LMI的阶数,就可以解决Lyapunov变量和系统矩阵的耦合问题。通过该算法求得的控制器能够保证闭环系统的鲁棒性小于给定的H范数上界;无论在正常和故障情况下都可以实现跟踪控制,并且正常情况下的系统性能最优,从而实现了系统的鲁棒容错控制。
1 问题描述 考虑如下线性系统:
(1)

式中:x(t)∈Rn, y(t)∈Rp, u(t)∈Rm, w(t)∈Rh分别为系统状态、输出、输入和外部干扰;AB分别为合适维数的系统矩阵和输入矩阵,A′=AA(t),B′=BB(t),ΔA(t)=EaΣ(t)Fa和ΔB(t)=EbΣ(t)Fb为范数有界不确定参数,EaFaEbFb为维数合适矩阵,ΣT(t)Σ(t)≤I为时变不确定变量。
在系统式(1)中加入执行器故障,可得系统故障模型为
(2)

式中:ΠL=diag(πL1, πL2, …, πLm)为执行器效率矩阵,L=0, 1, …, 2m-1。
在控制系统中往往需要对输入指令r(t)进行跟踪,即使系统式(2)的跟踪误差e(t)=r(t)-Csy(t)满足,矩阵Cs为用来选择与r(t)一致的输出信号。为了保证在执行器故障情况下系统跟踪没有静态误差,引入跟踪误差的积分信号,得到如下所示的增广系统:
(3)

不妨记增广系统状态和系统外部扰动为
(4)

于是可得
(5)

式中:
(6)

(7)

本文控制的目的是:针对增广系统式(6)设计一种控制器使得闭环系统能够渐近稳定。如果只考虑系统的稳定性,可能会导致控制器输出信号u(t)变得很大以致无法实现。为此,需要在设计过程中考虑对控制信号的度量。根据以上设计思想,在增广系统中引入包含系统状态和控制信号的关注输出z(t),于是可得
(8)

式中:CzDz为加权矩阵,用来平衡跟踪误差和控制能量。
考虑如下状态反馈控制器:
(9)

式中:K=[Ki?Kp]∈Rm×(l+n)为需求解的控制增益。
将式(9)代入式(6)、式(8),可得带有执行器故障的闭环系统为
(10)

式中:
(11)

(12)

本文设计的控制器需要使得闭环系统式(10)满足以下要求:
1)无论在正常或故障情况下,控制器均能够保证闭环系统渐近稳定。
2)对于带有范数有界不确定性系统式(10),所设计的控制器满足设定的性能指标,同时保证无故障时系统性能最优。
3)无论在正常或故障情况下,输出信号Csy(t)与参考信号r(t)之间无稳态误差。
为了方便下文的描述,给出如下引理。
引理1??Schur补引理。对给定的对称矩阵,以下3个条件是等价的:
(13)

引理2[12, 16-17]??设EFΨ为给定矩阵,Ψ为对称矩阵,且时变参数矩阵Σ(t)满足ΣT(t)·Σ(t)≤I。当
(14)

成立时,那么必定存在一个正常数ε满足:
(15)

推论??对于实矩阵XY,其维数符合相乘法则,存在ε>0使得如下不等式成立:
(16)

证明??只需令Ψ=0, Σ(t)=IE=XT, F=Y,即可得结论式(16)。??证毕
H范数指标是最优控制理论中最有效的性能指标之一,其主要用来刻画系统抗外来干扰的能力,同时也考虑了对自身参数摄动的抑制能力。H范数指标数学描述如下。
考虑如下系统:
(17)

式(17)中,外界干扰w(t)是能量有界信号。H控制问题可以表述为:设计一个控制器使得闭环系统渐近稳定,同时关注输出z(t)能量要小于γ倍外部干扰信号的能量,即‖z(t)‖22 < γw(t)‖22,γ为给定正数。由控制理论可知,这实质上就是要求z(t)到w(t)传递函数的无穷范数小于给定的γ值,即‖G()‖ < γ
下面将给出一个将H控制问题转化为LMI表达式的重要引理——有界实引理。
引理3??对于可控系统式(17),如果存在一个正定对称矩阵P满足如下不等式:
(18)

那么该系统是渐近稳定的,且满足‖Gzw()‖ < γ
2 鲁棒容错跟踪控制器设计 为了将本文所要求的鲁棒控制器设计转换为LMI描述,将闭环系统式(10)代入引理3可得
(19)

式中:PLγL分别表示不同故障状态下的Lyapunov变量和鲁棒性能指标。
为了分离出式(19)中不确定参数,对式(19)进行分解可得
(20)

易得式(20)中不等式右边第1项为对称矩阵,则由引理2可得必存在正标量ε1、ε2,满足:
(21)

由引理1进一步可得
(22)

注意式(22)中没有包含不确定参数,使得不等式求解成为可能。式(22)针对所有故障状态使用不同的Lyapunov变量PL,减小了控制器的保守性。为了使得正常情况时系统性能最优,需要最小化tr(P0)[18],tr表示矩阵的迹,P0为无故障状态下的Lyapunov变量。如此便将鲁棒控制器设计问题转化为:在LMI式(22)约束下目标函数为min(tr(P0))的优化问题。
易知式(22)仍属于非凸优化,无法利用现有的LMI工具求解。因此,本文发展了一种迭代LMI算法来解决此问题,为保证该迭代算法的有效运行,需要给出一个合适的初值。文献[19]利用互补线性化方法求解初始控制器,但在多参数线性化过程中,该方法往往无解。因此,本文给出了一种初始控制器求解方法。为了方便叙述,将执行器故障模型进行改写。记:
(23)

(24)

式中:πlj、πuj分别为控制效率矩阵的上、下界。
将式(24)代入式(23),即可得执行器效率矩阵为
(25)

并且易得|V|≤WI
定理1考虑闭环扩维系统式(10),对于给定的H范数上界γ,如果存在对称正定矩阵X,矩阵YZ和正标量?1~?5,满足:
(26)

(27)

则由此获得的状态反馈增益矩阵K=Π0-1ZX-1必能够保证闭环系统式(10)是渐近稳定的,闭环系统的鲁棒性能小于给定的H范数上界。
证明?由引理3可知,闭环系统是渐近稳定的,且满足‖Gzw()‖ < γ的充要条件是式(19)成立。不妨对所有的故障情况均使用同一个Lyapunov函数变量P,且对式(19)左右两边同乘以diag(P-1, I, I),并记X=P-1,于是可得
(28)

将式(28)进行分解可得
(29)

Z=Π0KX,同时由引理2的推论可得
(30)

将式(25)代入式(30)可得
(31)

其中
同理可得
(32)

于是可得
(33)

由此可知,不等式(33)右边是式(28)的一个强约束条件,因此不等式
(34)

的解也是不等式(28)的解, 进一步由引理1可知,式(34)和式(26)等价,即若有矩阵变量(X, Z)使得不等式(26)成立,则P=X-1必然是引理3所要求的LMI的解,因而由此得到的控制器就能保证闭环系统是渐近稳定的,且鲁棒性能小于给定的H范数上界,这就是式(26)的物理意义。
对式(27)应用引理1,可得X-1 < Y等价于P < Y,因此要求tr(Y)极小就是要求tr(P)极小,由保性能控制理论可知,这样做可以保证系统的性能最优,这也就是式(27)的物理意义。??证毕
根据得到的初始控制器K=Π0-1ZX-1, 利用下面给出的迭代LMI算法用来解决式(22)中的非凸求解问题。
Step 1??选择合适的H范数上界γ,根据定理1计算初始控制器K0=Π0-1Z0(X0)-1
Step 2??令K=K0,由LMI式(22)所约束的优化问题,计算得到对应不同故障情况的初始Lyapunov变量PL0
Step 3??在第j步迭代(j>0)。
1)将PL=PLj-1代入不等式(22),求解其中的优化问题,得到第j步的控制器增益Koptj
2)将K=Koptj代入不等式(22),求解其中的优化问题,得到第j步的Lyapunov变量PjL
Step 4??给定一个足够小的阈值σ,若|tr(P0jP0j-1)| < σ,输出的Kopt=Kjopt作为最优H鲁棒容错控制器增益,算法结束。否则,令j=j+1,返回Step 3。
算法的收敛性证明可以参看文献[20]。从迭代算法的步骤中可以看出,本文算法实质是通过两步优化方法实现了Lyapunov变量和控制增益的解耦,从而将非凸优化转化为凸优化。本文算法相比于扩展LMI算法,由于没有引入松弛变量,因此大大降低了LMI表达式的阶数,降低了LMI的求解难度,提高了运算效率;付出的代价是需要对低阶LMI(相对于扩展LMI算法)进行循环求解,但考虑到控制器的计算是离线的,因此这样的代价是可以接受的。
3 仿真实例 为了验证本文算法的有效性,以多操纵面高超声速飞行器X-33为对象,设计了飞行跟踪控制器。关于X-33模型的详细内容可以参考文献[21]。本文选取再入段做仿真研究,飞行器的系统状态x(t)=[β, Φ, α, p, q, r]T, 分别为侧滑角、滚转角、迎角、滚转角速率、俯仰角速率和偏航角速率;飞行器的输出y(t)=x(t);舵面输入u(t)=[δir, δil, δfr, δfl, δrr, δrl, δor, δol]T,分别为右侧内升降副翼、左侧内升降副翼、右侧襟翼、左侧襟翼、右侧方向舵、左侧方向舵、右侧外升降副翼和左侧外升降副翼。在控制器设计过程中,考虑2种故障,分别为右侧内升降副翼完全失效和右侧方向舵完全失效,即令相应的πLi=0。考虑系统的不确定性,系统矩阵摄动40%。飞行器需要跟踪的指令信号r(t)=[βcmd, Φcmd, αcmd]T;选择加权矩阵:

根据本文算法求出的鲁棒容错跟踪控制器如式(35)所示。为了验证本文算法的优越性,将其与所有故障状态均使用同一个Lyapunov变量的方法进行对比(也即本文算法的初值)。图 1给出了不存在故障时系统动态跟踪响应,此时2种控制器均能够很好地跟踪参考信号。图 2图 3分别给出了右侧内升降副翼和右侧方向舵失效故障时仿真结果,此时2种控制器仍然能够跟踪控制指令,但很明显无迭代优化情况的超调量比较大,控制效果显然不如本文算法。图 4给出了右侧内升降副翼和右侧方向舵同时失效故障时的仿真结果。可以看出,此时使用相同Lyapunov变量方法得到的控制器有较为明显的振荡,几乎无法跟踪指令,而本文算法的控制器虽然也有一些波动,但依然能够得到较好的稳定系统,这充分说明了本文算法可以有效削弱控制器的保守性。
(35)

图 1 无故障时飞行器指令响应曲线 Fig. 1 Command response curves of vehicle without fault
图选项




图 2 右侧内升降副翼失效时飞行器指令响应曲线 Fig. 2 Command response curves of vehicle under actuator outage of right inboard elevon
图选项




图 3 右侧方向舵失效时飞行器指令响应曲线 Fig. 3 Command response curves of vehicle under actuator outage of right rudder
图选项




图 4 右侧内升降副翼和右侧方向舵同时失效时飞行器指令响应曲线 Fig. 4 Command response curves of vehicle under actuators outage of both right inboard elevon and right rudder
图选项




4 结论 本文研究了一种迭代LMI算法,用来解决鲁棒容错控制器设计过程中存在的非凸优化问题。通过在高超声速飞行器X-33上的仿真实验, 得到了以下结论:
1)所设计的控制器不仅可以保证对指令的跟踪,而且能够使得正常情况下的跟踪性能最优,在故障情况下也能够保证对指令的跟踪。
2)与所有故障状态均使用同一个Lyapunov变量方法相比,本文算法可以降低控制器设计的保守性,提高系统的动态性能,并且闭环系统系统具有较好的鲁棒性, 甚至在多故障情况下仍能够保持较好的跟踪性能,从而验证了本文算法的正确性。

参考文献
[1] JI Y, ZHOU H L, ZONG Q. Adaptive active fault-tolerant control of generic hypersonic flight vehicles[J].Journal of Systems and Control Engineering, 2015, 229(2): 130–138.
[2] ZHANG P, LIU H H T, LI X B, et al. Fault tolerance of cooperative interception using multiple flight vehicles[J].Journal of the Franklin Institute, 2013, 350(9): 2373–2395.DOI:10.1016/j.jfranklin.2013.02.022
[3] 傅强. 航空发动机被动容错控制系统鲁棒性设计[J].测控技术, 2013, 32(5): 32–34.FU Q. Robustness design of passive fault tolerant control system for aero engine[J].Measurement & Control Technology, 2013, 32(5): 32–34.(in Chinese)
[4] 张爱华, 胡庆雷, 霍星, 等. 过驱动航天器飞轮故障重构与姿态容错控制[J].宇航学报, 2013, 34(3): 369–376.ZHANG A H, HU Q L, HUO X, et al. Fault reconstruction and fault tolerant attitude control for over-activated spacecraft under reaction wheel failure[J].Journal of Astronautics, 2013, 34(3): 369–376.(in Chinese)
[5] CHEN F Y, WANG Z, TAO G, et al. Robust adaptive fault-tolerant control for hypersonic flight vehicles with multiple faults[J].Journal of Aerospace Engineering, 2015, 28(4): 04014111.DOI:http://html.rhhz.net/BJHKHTDXXBZRB/10.1061/(ASCE)AS.1943-5525.0000449
[6] HE J J, QI R Y, JIANG B.Adaptive fault-tolerant control design for hypersonic flight vehicles based on feedback linearization[C]//33rd Chinese Control Conference.Piscataway, NJ: IEEE Press, 2014:3197-3202.http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6895464&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6895464
[7] YANG G H, ZHANG S Y, LAM J, et al. Reliable control using redundant controllers[J].IEEE Transactions on Automatic Control, 1998, 43(11): 1588–1593.DOI:10.1109/9.728875
[8] PANZA S, LOVERA M.Rotor state feedback in helicopter flight control: Robustness and fault tolerance[C]//2014 IEEE Conference on Control Applications.Piscataway, NJ:IEEE Press, 2014:451-456.http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6981387&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6981387
[9] 陈雪芹, 耿云海, 张迎春, 等. 基于LMI的鲁棒容错控制及其在卫星姿态控制中的应用[J].控制理论与应用, 2008, 25(1): 95–99.CHEN X Q, GENG Y H, ZHANG Y C, et al. Robust fault-tolerant control based on LMI approach and application in satellite attitude control system[J].Control Theory & Applications, 2008, 25(1): 95–99.(in Chinese)
[10] 陈明, 童朝南. 不确定系统鲁棒容错控制的LMI设计方法[J].控制与决策, 2009, 24(4): 526–531.CHEN M, TONG C N. LMI approach to robust fault-tolerant H-infinity control for uncertain systems[J].Control and Decision, 2009, 24(4): 526–531.(in Chinese)
[11] 杨冬梅, 孙俊娜. 不确定时滞线性离散系统的鲁棒容错控制[J].东北大学学报(自然科学版), 2012, 33(2): 161–164.YANG D M, SUN J N. Robust fault tolerant control for uncertain linear discrete systems with time-delay[J].Journal of Northeastern University(Natural Science), 2012, 33(2): 161–164.(in Chinese)
[12] YE S J, ZHANG Y M, WANG X M, et al.An improved LMI approach for static output feedback fault-tolerant control with application to flight tracking control[C]//4th IEEE Conference on Industrial Electronics and Applications.Piscataway, NJ:IEEE Press, 2009:35-40.http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5138166&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5138166
[13] 欧阳高翔, 倪茂林, 孙承启. 视故障为结构不确定项的鲁棒可靠跟踪控制器设计[J].控制理论与应用, 2009, 26(1): 80–84.OUYANG G X, NI M L, SUN C Q. Robust reliable tracking controller design when the fault is viewed as a structural uncertainty[J].Control Theory & Applications, 2009, 26(1): 80–84.(in Chinese)
[14] ZHANG Q J, YE S J, LI Y, et al. An enhanced LMI approach for mixed H2/H flight tracking control[J].Chinese Journal of Aeronautics, 2011, 24(3): 324–328.DOI:10.1016/S1000-9361(11)60038-1
[15] 王明昊, 刘刚, 杨述华. 高超声速飞行器的多胞LPV系统控制器设计[J].空间控制技术与应用, 2013, 39(1): 15–22.WANG M H, LIU G, YANG S H. Polytopic-LPV-system-based control design for hypersonic vehicle[J].Aerospace Control and Application, 2013, 39(1): 15–22.(in Chinese)
[16] XIE L. Output feedback H control of systems with parameter uncertainty[J].International Journal of Control, 1996, 63(4): 741–750.DOI:10.1080/00207179608921866
[17] 俞立, 陈国定, 杨马英. 不确定系统具有圆盘区域极点约束的鲁棒控制[J].自动化学报, 2000, 26(l): 116–120.YU L, CHEN G D, YANG M Y. Robust control of uncertain linear system with disk pole constraints[J].Acta Automatica Sinica, 2000, 26(l): 116–120.(in Chinese)
[18] HAN X D, LIU J G, XIE D X, et al. Robust H guaranteed cost satisfactory fault-tolerant control for discrete-time systems with quadratic D stabilizability[J].Journal of Systems Engineering and Electronics, 2010, 21(3): 496–502.DOI:10.3969/j.issn.1004-4132.2010.03.022
[19] HE Y, WANG Q G. An improved ILMI method for static output feedback control with application to multivariable PID control[J].IEEE Transactions on Automatic Control, 2006, 51(10): 1678–1683.DOI:10.1109/TAC.2006.883029
[20] CAO Y Y, LAM J, SUN Y X. Static output feedback stabilization: An ILMI approach[J].Automatica, 1998, 34(12): 1641–1645.DOI:10.1016/S0005-1098(98)80021-6
[21] HOLLIS B R, THOMPSON R A, MURPHY K J, et al. X-33 aerodynamic computations and comparisons with wind-tunnel data[J].Journal of Spacecraft and Rockets, 2001, 38(5): 684–691.DOI:10.2514/2.3753


相关话题/系统 控制 设计 信号 优化

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于母线电流的无刷直流电机换相位置优化策略*
    无刷直流(BLDC)电机因其高可靠性、高功率密度和高效率等优点,在众多领域得到广泛应用。其中,无位置传感器无刷直流电机省去了位置传感器,可以使电机结构更紧凑,可靠性更高,有效降低电机系统成本。因此,对于无位置传感器无刷直流电机控制策略的研究具有重要意义。常见的无位置传感器无刷直流电机控制方法主要有反 ...
    本站小编 Free考研考试 2021-12-25
  • 可重复使用飞行器进场着陆拉平纵向控制*
    可重复使用飞行器(ReusableLaunchVehicle,RLV)的无动力特性表明,RLV在进场着陆过程中不能复飞,仅能通过操纵相关的气动舵面来控制高度和动压,使RLV沿着期望的着陆轨迹实现安全着陆[1]。整个进场着陆过程分为深下滑段、拉平段和地面滑跑段,其中拉平段是决定飞行器安全着陆的关键阶段 ...
    本站小编 Free考研考试 2021-12-25
  • 利于减少配平损失的太阳能飞机构型设计*
    太阳能飞机通过太阳能电池接受太阳能辐射,将太阳能转化为电能。白天将一部分能量提供给飞行所需的能耗并将剩余的能量储存在蓄电池中,提供飞机夜间飞行。太阳能飞机的能量来源优势,让它可以巡航飞行几个月甚至更久[1-5]。因此太阳能飞机在中继通信,情报、监视和侦察(ISR),野火警告系统,农业协助,边境巡逻, ...
    本站小编 Free考研考试 2021-12-25
  • 多约束下备件多层多级库存优化模型*
    备件库存管理是后勤保障中最关键的问题之一,因为装备系统可用性关系到武器装备的战略性实施及库存成本的使用。即使有大量多种多样的备件增加库存成本,但当出现任何一个备件短缺时对系统的可用性都有非常大的影响,故采用合理、科学的备件携带方案就显得至关重要。自Sherbrooke[1-3]提出经典的备件多层级库 ...
    本站小编 Free考研考试 2021-12-25
  • 基于诱导航线的多无人机编队飞行控制方法*
    近十多年来,随着计算、通信和传感器等技术的不断发展,无人机在民用和军事领域发挥着日益重要的作用。通过通信和协调,多无人机可以组成编队,以协同的方式执行任务,在复杂战场环境中,无人机编队在容错性、可靠性和协作性上比单架无人机具有明显优势。因此无人机编队协同控制越来越受到学术界的重视。针对无人机编队飞行 ...
    本站小编 Free考研考试 2021-12-25
  • 基于高阶奇异值分解的LPV鲁棒控制器设计*
    与传统飞行器相比,高超声速飞行器再入过程需要以十几倍声速跨越约100km的飞行高度,具有飞行包线跨度大、参数快时变以及强不确定性等特性,给控制器的设计提出了更高的要求。相对于动态逆[1]、滑模[2]等非线性控制器设计过程的复杂性,基于线性变参数(LPV)系统的变增益控制方法能够处理参数大范围快时变系 ...
    本站小编 Free考研考试 2021-12-25
  • 重型直升机-吊挂耦合系统闭环飞行品质分析*
    直升机带外吊挂运输飞行是直升机相比于其他种类飞行器的一项特有功能。吊挂物不受货物外形限制,直升机还可以在一般运输工具难以到达的地方迅速、高效地完成起降、装卸货物等任务,大大拓宽了运输范围。与直升机非吊挂飞行状态相比,直升机吊挂飞行增加了新的载荷和惯性力,以及因此产生的对直升机质心的力矩。建立合理的非 ...
    本站小编 Free考研考试 2021-12-25
  • SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法*
    土壤湿度在农业生产中有着举足轻重的地位。微波遥感是土壤湿度测量的重要手段。L波段电磁波在大气中衰减少,并能有效穿透植被,被认为是探测土壤湿度的理想波段。全球导航卫星系统反射信号(GlobalNavigationSatelliteSystem-Reflection,GNSS-R)技术是利用导航卫星的反 ...
    本站小编 Free考研考试 2021-12-25
  • 基于舵面位置反馈的实用非线性控制分配方法*
    现代先进布局飞机为了获得更高的机动性、操纵性及其他控制目标,在布局上大多采用多操纵面结构,不同的操纵面组合能够实现相同的力矩控制,使得飞行控制系统成为一种过驱动系统(overactuatedsystem)。然而多操纵面飞机在提高飞行控制系统可靠性的同时,由于控制面冗余和耦合程度增强,如何在考虑操纵面 ...
    本站小编 Free考研考试 2021-12-25
  • 考虑认知不确定的雷达功率放大系统可靠性评估*
    在实际工程中,某些系统除“正常工作”和“完全失效”2种状态外,可以在多个性能水平下运行,这样的系统称为多态系统(Multi-StateSystem,MSS)[1],与二态系统模型相比,多态系统模型能够准确地描述部件的多态性,更加灵活地表征部件性能变化对系统性能和可靠性的影响[2]。20世纪70年代多 ...
    本站小编 Free考研考试 2021-12-25