删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

图像配准中方向场正则化模型的适定性和收敛性

本站小编 Free考研考试/2021-12-27

图像配准中方向场正则化模型的适定性和收敛性 郑晓俊1, 郇中丹2, 刘君21. 海南师范大学初等教育学院 海口 571158;
2. 北京师范大学数学科学学院 北京 100875 Well-posedness and Convergence of the Vector Field Regularization Model in Image Registration Xiao Jun ZHENG1, Zhong Dan HUAN2, Jun LIU21. Elementary Education School, Hainan Normal University, Haikou 571158, P. R. China;
2. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(710 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要图像配准是图像处理的一个重要方面.方向场正则化模型是现有配准方法中效果相对突出的模型.然而它仍然无法正确对齐所有感兴趣的区域.因此,本文从理论角度研究方向场正则化模型,希望寻找模型设计可能存在的问题.由于模型中有一个直接变量和一个由直接变量通过常微初值问题确定的间接变量,所以它是数学上的一类新颖的正则化模型.方向场正则化模型定义为minv{α||v||H2+ρTyvτ)),S)},其中TS分别是模板图像和参考图像,yvτ):x?yvτ;0,x)是由初值问题dy/ds=vs,y),y(0)=x的解yvs;0,x)定义的变换,ρ是相似性泛函,α>0是正则化参数,H是希尔伯特空间.本文首先证明了方向场正则化模型有稳定解,然后证明了其收敛性.结合yvτ)与v的收敛关系和正则化问题的经典理论可得上述结论.然而,在现有理论下,ρST需满足较强的条件.本文通过充分利用yvτ)的性质,提出了关于ρST的相对弱的条件.此外,我们还验证了配准常用的3个相似性泛函都满足所提条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-03-03
MR (2010):O177.92
基金资助:海南省自然科学基金资助项目(118QN023)
作者简介: 郑晓俊,E-mail:xjzheng88@163.com;郇中丹,E-mail:zdhuan@bnu.edu.cn;刘君,E-mail:jliu@bnu.edu.cn
引用本文:
郑晓俊, 郇中丹, 刘君. 图像配准中方向场正则化模型的适定性和收敛性[J]. 数学学报, 2021, 64(3): 385-404. Xiao Jun ZHENG, Zhong Dan HUAN, Jun LIU. Well-posedness and Convergence of the Vector Field Regularization Model in Image Registration. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 385-404.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/385


[1] Arnold V. I., Ordinary Differerntial Equations, MIT Press, Cambridge, 1973.
[2] Avants B. B., Epstein C. L., Grossman M., et al., Symmetric diffeomorphic image registration with crosscorrelation:evaluating automated labeling of elderly and neurodegenerative brain, Med. Image Anal., 2008, 12:26-41.
[3] Avants B. B., Tustison N. J., Song G., et al., Ants:Advanced Open-source Normalization Tools for Neuroanatomy, Penn Image Computing and Science Laboratory, Philadelphia, 2009.
[4] Avants B. B., Tustison N. J., Song G., et al., A reproducible evaluation of ANTs similarity metric performance in brain image registration, NeuroImage, 2011, 54:2033-2044.
[5] Beg M. F., Miller M. I., Trouvé A., et al., Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, 2005, 61:139-157.
[6] Brown L. G., A survey of image registration techniques, ACM Comput. Surv., 1992, 24:325-376.
[7] Burger M., Osher S., Convergence rates of convex variational regularization, Inverse Probl., 2004, 20:1411-1421.
[8] Christensen G. E., Johnson H. J., Consistent image registration, IEEE T. Med. Imaging, 2001, 20:568-582.
[9] Chung A. C., Wells W. M., Norbash A., et al., Multi-modal image registration by minimising Kullback-Leibler distance, The 5th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science), Vol. 2489, Springer-Verlag, Berlin, 2002:523-532.
[10] Cover T. M., Thomas J. A., Elements of Information Theory, John Wiley & Sons, New York, 2012.
[11] Crum W. R., Griffin L. D., Hill D. L., et al., Zen and the art of medical image registration:correspondence, homology, and quality, NeuroImage, 2003, 20:1425-1437.
[12] Droske M., Rumpf M., A variational approach to nonrigid morphological image registration, SIAM J. Appl. Math., 2004, 64:668-687.
[13] Du J., Younes L., Qiu A., Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images, NeuroImage, 2011, 56:162-173.
[14] Dupuis P., Grenander U., Miller M. I., Variational problems on flows of diffeomorphisms for image matching, Q. Appl. Math., 1998, 56:587-600.
[15] Engl H. W., Kunisch K., Neubauer A., Convergence rates for Tikhonov regularisation of non-linear ill-posed problems, Inverse Probl., 1989, 5:523-540.
[16] Evants L. C., Partial Differential Equations, American Mathematical Society, Providence, 2010.
[17] Fiez J. A., Damasio H., Grabowski T. J., Lesion segmentation and manual warping to a reference brain:intra-and interobserver reliability, Hum. Brain Mapp., 2000, 9:192-211.
[18] Flemming J., Theory and examples of variational regularization with non-metric fitting functionals, J. Inverse Ill-Pose Probl., 2010, 18:677-699.
[19] Flemming J., Generalized Tikhonov Regularization:Basic Theory and Comprehensive Results on Convergence Rates, Ph.D. thesis, Chemnitz University of Technology Chemnitz, 2011.
[20] Hill D. L., Batchelor P. G., Holden M., et al., Medical image registration, Phys. Med. Biol., 2001, 46:R1-R45.
[21] Hofmann B., Kaltenbacher B., Poeschl C., et al., A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Probl., 2007, 23:987-1010.
[22] Jensen J. R., Introductory Digital Image Processing:A Remote Sensing Perspective, University of South Carolina, Columbia, 1986.
[23] Kasturi R., Jain R. C., Computer Vision:Principles, IEEE Computer Society Press, Los Alamitos, 1991.
[24] Kim M., Wu G., Yap P. T., et al., A general fast registration framework by learning deformation-appearance correlation, IEEE T. Image P., 2012, 21:1823-1833.
[25] Klein A., Anderson J., Ardekani B. A., et al., Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, 2009, 46:786-802.
[26] Klein S., Staring M., Pluim J. P., Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines, IEEE T. Image P., 2007, 16:2879-2890.
[27] Maintz J. B., Viergever M. A., A survey of medical image registration, Med. Image Anal., 1998, 2:1-36.
[28] Modersitzki J., Numerical Methods for Image Registration, Oxford University Press, New York, 2003.
[29] Reducindo I., Arce-Santana E. R., Campos-Delgado D. U., et al., Non-rigid multimodal medical image registration based on the conditional statistics of the joint intensity distribution, Procedia Tech., 2013, 7:126-133.
[30] Rohlfing T., Maurer C. R., Bluemke D. A., et al., Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint, IEEE T. Med. Imaging, 2003, 22:730-741.
[31] Sotiras A., Davatzikos C., Paragios N., Deformable medical image registration:a survey, IEEE T. Med. Imaging, 2013, 32:1153-1190.
[32] Studholme C., Cardenas V., Blumenfeld R., et al., Deformation tensor morphometry of semantic dementia with quantitative validation, NeuroImage, 2004, 21:1387-1398.
[33] Stytz M. R., Frieder G., Three-dimensional medical imaging:algorithms and computer systems, ACM Comput. Surv. (CSUR), 1991, 23:421-499.
[34] Vogel C. R., Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2002.
[35] Wang H., Suh J. W., Das S. R., et al., Multi-atlas segmentation with joint label fusion, IEEE T. Pattern Anal. Mach. Intell., 2013, 35:611-623.
[36] Yosida K., Functional Analysis, Springer-Verlag, Berlin, 1965.
[37] Yushkevich P. A., Avants B. B., Pluta J., et al., A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T, NeuroImage, 2009, 44:385-398.

[1]陈员龙, 骆世广. Banach空间中正则非退化异宿环的Lipschitz扰动[J]. 数学学报, 2021, 64(3): 485-492.
[2]张伟, 李云章. Hilbert空间中控制连续g-框架[J]. 数学学报, 2021, 64(3): 515-528.
[3]谢林森, 谢庭藩, 杜鸿. 双截断Baskakov局部化算子的收敛性[J]. 数学学报, 2021, 64(2): 261-268.
[4]冯保伟, 李海燕. 带有热记忆的非均匀柔性结构的长时间动力行为[J]. 数学学报, 2020, 63(6): 587-600.
[5]王珏钰, 顾超, 朱德通. 一种非单调滤子信赖域算法解线性不等式约束优化[J]. 数学学报, 2020, 63(6): 601-620.
[6]杜金金, 王昊. 推广的GDGH2系统的自相似解及爆破现象[J]. 数学学报, 2019, 62(1): 137-150.
[7]路秋英, 邓桂丰, 刘潇, 朱德明. 连接两个具有一维不稳定流形的双曲鞍点异宿环的稳定性[J]. 数学学报, 2018, 61(5): 761-770.
[8]苏日古嘎, 吴德玉, 阿拉坦仓. 分块算子矩阵闭值域研究[J]. 数学学报, 2018, 61(3): 447-456.
[9]范筱, 蒋英春. 混合范数条件下平移不变信号的非均匀平均采样[J]. 数学学报, 2018, 61(2): 289-300.
[10]张丽丽, 任志茹. M-矩阵线性互补问题模系多分裂迭代方法的收敛性[J]. 数学学报, 2017, 60(4): 547-556.
[11]孟庆. C*代数l上的左模的半双线性型的稳定性[J]. 数学学报, 2016, 59(1): 99-106.
[12]纪培胜, 赵英姿. Jensen-二次函数方程及其Hyers—Ulam稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 251-260.
[13]王小焕, 吕广迎. 非局部时滞反应扩散方程行波解的稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 13-28.
[14]丁明玲, 肖祥春, 朱玉灿. Hilbert空间中的K-框架[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1089-1100.
[15]胡业新. 一类拟线性椭圆型方程边值问题的稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1181-1190.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23757
相关话题/数学 图像 空间 控制 设计