摘要图像配准是图像处理的一个重要方面.方向场正则化模型是现有配准方法中效果相对突出的模型.然而它仍然无法正确对齐所有感兴趣的区域.因此,本文从理论角度研究方向场正则化模型,希望寻找模型设计可能存在的问题.由于模型中有一个直接变量和一个由直接变量通过常微初值问题确定的间接变量,所以它是数学上的一类新颖的正则化模型.方向场正则化模型定义为minv{α||v||H2+ρ(T(yv(τ)),S)},其中T和S分别是模板图像和参考图像,yv(τ):x?yv(τ;0,x)是由初值问题dy/ds=v(s,y),y(0)=x的解yv(s;0,x)定义的变换,ρ是相似性泛函,α>0是正则化参数,H是希尔伯特空间.本文首先证明了方向场正则化模型有稳定解,然后证明了其收敛性.结合yv(τ)与v的收敛关系和正则化问题的经典理论可得上述结论.然而,在现有理论下,ρ,S和T需满足较强的条件.本文通过充分利用yv(τ)的性质,提出了关于ρ,S和T的相对弱的条件.此外,我们还验证了配准常用的3个相似性泛函都满足所提条件. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-03-03 | | 基金资助:海南省自然科学基金资助项目(118QN023)
| 作者简介: 郑晓俊,E-mail:xjzheng88@163.com;郇中丹,E-mail:zdhuan@bnu.edu.cn;刘君,E-mail:jliu@bnu.edu.cn |
[1] Arnold V. I., Ordinary Differerntial Equations, MIT Press, Cambridge, 1973. [2] Avants B. B., Epstein C. L., Grossman M., et al., Symmetric diffeomorphic image registration with crosscorrelation:evaluating automated labeling of elderly and neurodegenerative brain, Med. Image Anal., 2008, 12:26-41. [3] Avants B. B., Tustison N. J., Song G., et al., Ants:Advanced Open-source Normalization Tools for Neuroanatomy, Penn Image Computing and Science Laboratory, Philadelphia, 2009. [4] Avants B. B., Tustison N. J., Song G., et al., A reproducible evaluation of ANTs similarity metric performance in brain image registration, NeuroImage, 2011, 54:2033-2044. [5] Beg M. F., Miller M. I., Trouvé A., et al., Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, 2005, 61:139-157. [6] Brown L. G., A survey of image registration techniques, ACM Comput. Surv., 1992, 24:325-376. [7] Burger M., Osher S., Convergence rates of convex variational regularization, Inverse Probl., 2004, 20:1411-1421. [8] Christensen G. E., Johnson H. J., Consistent image registration, IEEE T. Med. Imaging, 2001, 20:568-582. [9] Chung A. C., Wells W. M., Norbash A., et al., Multi-modal image registration by minimising Kullback-Leibler distance, The 5th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science), Vol. 2489, Springer-Verlag, Berlin, 2002:523-532. [10] Cover T. M., Thomas J. A., Elements of Information Theory, John Wiley & Sons, New York, 2012. [11] Crum W. R., Griffin L. D., Hill D. L., et al., Zen and the art of medical image registration:correspondence, homology, and quality, NeuroImage, 2003, 20:1425-1437. [12] Droske M., Rumpf M., A variational approach to nonrigid morphological image registration, SIAM J. Appl. Math., 2004, 64:668-687. [13] Du J., Younes L., Qiu A., Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images, NeuroImage, 2011, 56:162-173. [14] Dupuis P., Grenander U., Miller M. I., Variational problems on flows of diffeomorphisms for image matching, Q. Appl. Math., 1998, 56:587-600. [15] Engl H. W., Kunisch K., Neubauer A., Convergence rates for Tikhonov regularisation of non-linear ill-posed problems, Inverse Probl., 1989, 5:523-540. [16] Evants L. C., Partial Differential Equations, American Mathematical Society, Providence, 2010. [17] Fiez J. A., Damasio H., Grabowski T. J., Lesion segmentation and manual warping to a reference brain:intra-and interobserver reliability, Hum. Brain Mapp., 2000, 9:192-211. [18] Flemming J., Theory and examples of variational regularization with non-metric fitting functionals, J. Inverse Ill-Pose Probl., 2010, 18:677-699. [19] Flemming J., Generalized Tikhonov Regularization:Basic Theory and Comprehensive Results on Convergence Rates, Ph.D. thesis, Chemnitz University of Technology Chemnitz, 2011. [20] Hill D. L., Batchelor P. G., Holden M., et al., Medical image registration, Phys. Med. Biol., 2001, 46:R1-R45. [21] Hofmann B., Kaltenbacher B., Poeschl C., et al., A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Probl., 2007, 23:987-1010. [22] Jensen J. R., Introductory Digital Image Processing:A Remote Sensing Perspective, University of South Carolina, Columbia, 1986. [23] Kasturi R., Jain R. C., Computer Vision:Principles, IEEE Computer Society Press, Los Alamitos, 1991. [24] Kim M., Wu G., Yap P. T., et al., A general fast registration framework by learning deformation-appearance correlation, IEEE T. Image P., 2012, 21:1823-1833. [25] Klein A., Anderson J., Ardekani B. A., et al., Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, 2009, 46:786-802. [26] Klein S., Staring M., Pluim J. P., Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines, IEEE T. Image P., 2007, 16:2879-2890. [27] Maintz J. B., Viergever M. A., A survey of medical image registration, Med. Image Anal., 1998, 2:1-36. [28] Modersitzki J., Numerical Methods for Image Registration, Oxford University Press, New York, 2003. [29] Reducindo I., Arce-Santana E. R., Campos-Delgado D. U., et al., Non-rigid multimodal medical image registration based on the conditional statistics of the joint intensity distribution, Procedia Tech., 2013, 7:126-133. [30] Rohlfing T., Maurer C. R., Bluemke D. A., et al., Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint, IEEE T. Med. Imaging, 2003, 22:730-741. [31] Sotiras A., Davatzikos C., Paragios N., Deformable medical image registration:a survey, IEEE T. Med. Imaging, 2013, 32:1153-1190. [32] Studholme C., Cardenas V., Blumenfeld R., et al., Deformation tensor morphometry of semantic dementia with quantitative validation, NeuroImage, 2004, 21:1387-1398. [33] Stytz M. R., Frieder G., Three-dimensional medical imaging:algorithms and computer systems, ACM Comput. Surv. (CSUR), 1991, 23:421-499. [34] Vogel C. R., Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2002. [35] Wang H., Suh J. W., Das S. R., et al., Multi-atlas segmentation with joint label fusion, IEEE T. Pattern Anal. Mach. Intell., 2013, 35:611-623. [36] Yosida K., Functional Analysis, Springer-Verlag, Berlin, 1965. [37] Yushkevich P. A., Avants B. B., Pluta J., et al., A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T, NeuroImage, 2009, 44:385-398.
|
[1] | 陈员龙, 骆世广. Banach空间中正则非退化异宿环的Lipschitz扰动[J]. 数学学报, 2021, 64(3): 485-492. | [2] | 张伟, 李云章. Hilbert空间中控制连续g-框架[J]. 数学学报, 2021, 64(3): 515-528. | [3] | 谢林森, 谢庭藩, 杜鸿. 双截断Baskakov局部化算子的收敛性[J]. 数学学报, 2021, 64(2): 261-268. | [4] | 冯保伟, 李海燕. 带有热记忆的非均匀柔性结构的长时间动力行为[J]. 数学学报, 2020, 63(6): 587-600. | [5] | 王珏钰, 顾超, 朱德通. 一种非单调滤子信赖域算法解线性不等式约束优化[J]. 数学学报, 2020, 63(6): 601-620. | [6] | 杜金金, 王昊. 推广的GDGH2系统的自相似解及爆破现象[J]. 数学学报, 2019, 62(1): 137-150. | [7] | 路秋英, 邓桂丰, 刘潇, 朱德明. 连接两个具有一维不稳定流形的双曲鞍点异宿环的稳定性[J]. 数学学报, 2018, 61(5): 761-770. | [8] | 苏日古嘎, 吴德玉, 阿拉坦仓. 分块算子矩阵闭值域研究[J]. 数学学报, 2018, 61(3): 447-456. | [9] | 范筱, 蒋英春. 混合范数条件下平移不变信号的非均匀平均采样[J]. 数学学报, 2018, 61(2): 289-300. | [10] | 张丽丽, 任志茹. M-矩阵线性互补问题模系多分裂迭代方法的收敛性[J]. 数学学报, 2017, 60(4): 547-556. | [11] | 孟庆. C*代数l上的左模的半双线性型的稳定性[J]. 数学学报, 2016, 59(1): 99-106. | [12] | 纪培胜, 赵英姿. Jensen-二次函数方程及其Hyers—Ulam稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 251-260. | [13] | 王小焕, 吕广迎. 非局部时滞反应扩散方程行波解的稳定性[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 13-28. | [14] | 丁明玲, 肖祥春, 朱玉灿. Hilbert空间中的K-框架[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1089-1100. | [15] | 胡业新. 一类拟线性椭圆型方程边值问题的稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1181-1190. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23757
Frchet空间上集值微分方程初值问题解的高阶收敛性王培光,邢珍钰,吴曦冉河北大学数学与信息科学学院保定071002Higher-OrderConvergenceofSolutionsofInitialValueProblemforSetDifferentialEquationsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中正则非退化异宿环的Lipschitz扰动陈员龙,骆世广广东金融学院金融数学与统计学院广州510521TheLipschitzPerturbationsofRegularNondegenrateHeteroclinicCyclesinBanachSpacesYuanLongCHEN, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27半序MengerPM-空间中广义弱压缩映射的最佳逼近点定理吴照奇1,朱传喜1,袁成桂21.南昌大学理学院数学系南昌330031;2.英国斯旺西大学数学系斯旺西SA28PPBestProximityPointTheoremsforGeneralizedWeakContractiveMappingsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27完备度量空间中的混沌判定吴小英,陈员龙,王芬广东金融学院金融数学与统计学院广州510521ChaoticCriteriainCompleteMetricSpacesXiaoYingWU,YuanLong,CHENFenWANGSchoolofFinancialMathematicsandStatis ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间几何常数与集值非扩张映射的不动点左占飞重庆三峡学院数学与统计学院重庆404100SomeGeometricConstantsandFixedPointsforMultivaluedNonexpansiveMappingsZhanFeiZUODepartmentofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间上p-fusion框架的若干等价描述林丽琼1,张云南21.福州大学数学与计算机科学学院福州350108;2.福建师范大学数学与信息学院福州350108SomeEquivalentDescriptionsofp-fusionFramesonBanachSpacesLiQiongLIN1 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子王盛荣,徐景实桂林电子科技大学数学与计算科学学院桂林541004CommutatorsofBilinearHardyOperatorsonWeightedHerzMorreySpaceswithVariableExpo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27加权Bloch空间上复合算子的线性组合张利,楚秀娇南阳师范学院南阳473061LinearCombinationsofCompositionOperatorsonWeightedBlochTypeSpaceLiZHANG,XiuJiaoCHUNanyangNormalUniversity,Nanya ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27bp(2)空间中的等距映射王瑞东,王普天津理工大学理学院天津300384TheIsometryonbp(2)SpaceRuiDongWANG,PuWANGDepartmentofMathematics,TianjinUniversityofTechnology,Tianjin300384,P.R.C ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27改进的Tsirelson空间TM上的Wigner定理熊晓蕾,谭冬妮天津理工大学数学系天津300384Wigner'sTheoremontheModifiedTsirelsonSpaceTMXiaoLeiXIONG,DongNiTANDepartmentofMathematics,TianjinUni ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|