删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

改进的Tsirelson空间TM上的Wigner定理

本站小编 Free考研考试/2021-12-27

改进的Tsirelson空间TM上的Wigner定理 熊晓蕾, 谭冬妮天津理工大学数学系 天津 300384 Wigner's Theorem on the Modified Tsirelson Space TM Xiao Lei XIONG, Dong Ni TANDepartment of Mathematics, Tianjin University of Technology, Tianjin 300384, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(461 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要XY是赋范空间,如果映射fXY满足{||fx)+fy)||,||fx)-fy)||}={||x+y||,||x-y||}(x,yX),则称f是一个相位等距算子.设gfXY是映射,若存在相位函数εX→{-1,1},使得ε·f=g,则称gf是相位等价的.本文将证明改进的Tsirelson空间TM上的任意满相位等距算子均相位等价于一个线性等距算子.该结论同时也给出了改进的Tsirelson空间TM上的Wigner型定理.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-09-28
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11371201)
通讯作者:谭冬妮E-mail: tandongni0608@sina.cn
作者简介: 熊晓蕾,E-mail:x719179931@163.com
引用本文:
熊晓蕾, 谭冬妮. 改进的Tsirelson空间TM上的Wigner定理[J]. 数学学报, 2020, 63(6): 629-638. Xiao Lei XIONG, Dong Ni TAN. Wigner's Theorem on the Modified Tsirelson Space TM. Acta Mathematica Sinica, Chinese Series, 2020, 63(6): 629-638.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I6/629


[1] Gehér Gy P., An elementary proof for the non-bijective version of Wigner's theorem, Phys. Lett. A, 2014, 378:2054-2057.
[2] Györy M., A new proof of Wigner's theorem, Rep. Math. Phys., 2004, 54(2):159-167.
[3] Huang X. J., Tan D. N., Wigner's theorem in atomic Lp-spaces (p > 0), Publ. Math. Debrecen, 2018, 92(3-4):411-418.
[4] Jia W. K., Tan D. N., Wigner's theorem in L(Γ)-type spaces, Bull. Aust. Math. Soc., 2018, 97(2):279-284.
[5] Johnson W. B., A reflexive Banach space which is not sufficiently Euclidean, Studia Math., 1976, 55:201-205.
[6] Li Y. X., Tan D. N., Wigner's theorem in the Tsirelson space T, Ann. Funct. Anal., 2019, 10(4):515-524.
[7] Maksa G., Páles Z., Wigner's theorem revisited, Publ. Math. Debrecen, 2012, 8(1-2):243-249.
[8] Mazur S., Ulam S., Surles transformationes isométriques despaces vectoriels normés, C. R. Math. Acad. Sci. Paris, 1932, 194:946-948.
[9] Molnár L., Orthogonality preserving transformations on indefinite inner product spaces:generalization of Uhlhorn's version of Wigner's theorem, J. Funct. Anal., 2002, 194(2):248-262.
[10] Mouchet A., An alternative proof of Wigner theorem on quantum transformations based on elementary complex analysis, Phys. Lett. A, 2013, 377:2709-2711.
[11] Rätz J., On Wigner's theorem:remarks, complements, comments, and corollaries, Aequat. Math., 1996, 52(1-2):1-9.
[12] Sharma C. S., Almeida D. L., A direct proof of Wigner's theorem on maps which preserve transition probabilities between pure states of quantum systems, Ann. Phys., 1990, 197(2):300-309.
[13] Simon R., Mukunda N., Chaturvedi S., Srinivasan V., Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A, 2014, 378(30-31):2332-2335.
[14] Tan D. N., Isometries of the unit spheres of the Tsirelson space T and the modified Tsirelson space TM, Houston J. Math., 2012, 38(2):571-581.
[15] Tan D. N., Nonexpansive mappings on the unit spheres of some Banach spaces, Bull. Aust. Math. Soc., 2009, 80:139-146.
[16] Tan D. N., Huang X. J., Phase-isometries on real normed spaces, J. Math. Anal. Appl., 2020, 488:124058.https://doi.org/10.1016/j.jmaa.2020.124058.
[17] Turnšek A., A variant of Wigner's functional equation, Aequat. Math., 2015, 89:949-956.

[1]纪培胜;魏翠萍;. 超有限Ⅱ_1型因子中Cartan双模代数上等距和2-局部等距[J]. Acta Mathematica Sinica, English Series, 2006, 49(1): 51-58.
[2]严志敏. 强拟凸域上H~p空间的线性等距[J]. Acta Mathematica Sinica, English Series, 1986, 29(4): 535-538.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23671
相关话题/空间 代数 天津理工大学 数学系 天津