删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类基于量子程序理论的序列效应代数

本站小编 Free考研考试/2021-12-27

一类基于量子程序理论的序列效应代数 李午栋1, 张颖2, 贺衎31 太原理工大学数学学院 太原 030024;
2 太原理工大学信息与计算机学院 太原 030024;
3 太原理工大学数学学院 & 信息与计算机学院 & 软件学院 太原 030024 A Sub-sequential Effect Algebra from the Quantum Programming Theory Wu Dong LI1, Ying ZHANG2, Kan HE31 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. China;
2 College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, P. R. China;
3 College of Mathematics & College of Information and Computer & College of Software, Taiyuan University of Technology, Taiyuan 030024, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(496 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要空间上的算子理论是量子力学的基本数学框架之一.Hilbert空间效应代数是指小于等于单位算子的正算子集合.我们引入了Hilbert空间效应代数的一类子序列效应代数,并讨论了其上序列积的基本运算性质.我们发现:由于代数结构的不同,这类新的序列效应代数与现有效应代数上的运算性质有很大差异.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-25
MR (2010):O177.92
基金资助:国家自然科学基金资助项目(11771011);山西省自然科学基金资助项目(201701D221011)
通讯作者:贺衎E-mail: kanhequantum@163.com
作者简介: 李午栋,E-mail:1822787426@qq.com;张颖,E-mail:zhangying-1226@163.com
引用本文:
李午栋, 张颖, 贺衎. 一类基于量子程序理论的序列效应代数[J]. 数学学报, 2020, 63(6): 647-654. Wu Dong LI, Ying ZHANG, Kan HE. A Sub-sequential Effect Algebra from the Quantum Programming Theory. Acta Mathematica Sinica, Chinese Series, 2020, 63(6): 647-654.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I6/647


[1] Gudder S., Compression bases in effect algebras, Demonstratio Mathematica, 2006, 39(1):43-54.
[2] Gudder S., Open problems for sequential effect algebras, Int. J. Theor. Phys., 2005, 44(12):2199-2206.
[3] Gudder S., Tensor products of sequential effect algebras, Math. Slovaca, 2004, 54(1):1-11.
[4] Gudder S., Greechie R., Sequential products on effect algebras, Rep. Math. Phys., 2002, 49(1):87-111.
[5] Gudder S., Greechie R., Uniqueness and order in sequential effect algebras, Int. J. Theor. Phys., 2005, 44(7):755-770.
[6] Gudder S., Nagy G., Sequential quantum measurements, J. Math. Phys., 2001, 42(11):5212-5222.
[7] Lei Q., Su X., Wu J., Continuity of the sequential product of sequential quantum effect algebras, J. Math. Phys., 2016, 57(4):043501(7 pages).
[8] Liu W., Wu J., A uniqueness problem of the sequence product on operator effect algebra E (H), J. Phys. A:Math. Theor., 2009, 42(18):185206(10 pages).
[9] Ludwig G., Foundations of Quantum Mechanics, Vol. I, Springer-Verlag, New York, Heidelberg, Berlin, 1983.
[10] Shen J., Wu J., Remarks on the sequential effect algebras, Rep. Math. Phys., 2009, 63(3):441-446.
[11] Shen J., Wu J., Sequential product on standard effect algebra E (H), J. Phys. A:Math. Theor., 2009, 42(34):345203(12 pages).
[12] Wigner E. P., Group Theory:and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, London, 1959.
[13] Ying M., Floyd-Hoare logic for quantum programs, ACM T. Progr. Lang. Sys., 2011, 33(6):art. 19(49 pages).
[14] Ying M., Foundations of Quantum Programming, Morgan Kaufmann, San Francisco, 2016.
[15] Ying M., Yu N., Feng Y., et al., Verification of quantum programs, Sci. Comput. Program., 2013, 78(9):1679-1700.

[1]黄永峰, 曹怀信, 王文华. 伪自伴量子系统的酉演化与绝热定理[J]. 数学学报, 2019, 62(3): 469-478.
[2]周仙耕, 张敏. 两类统计收敛的表示定理[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 251-256.
[3]关伟波, 宋文. Banach空间中的弱凸集和W-太阳集[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 45-50.
[4]施慧华, 王波. 理想收敛的若干研究及推广[J]. 数学学报, 2016, 59(3): 335-342.
[5]王文华, 陈峥立, 宋云. PT-对称算子的表示及非正交量子态的区分[J]. 数学学报, 2020, 63(6): 557-564.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23673
相关话题/代数 数学 序列 空间 太原理工大学