删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

广义n-赋范空间中的Vogt定理

本站小编 Free考研考试/2021-12-27

广义n-赋范空间中的Vogt定理 马玉梅大连民族大学理学院 大连 116600 The Vogt Theorem in G-n-normed Spaces Yu Mei MASchool of Science, Dalian Minzu University, Dalian 116600, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(357 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文推广Vogt定理到广义n-赋范空间,即证明了两个广义n-赋范空间之间的保持ρ-诱导距离映射是仿射的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-08-15
MR (2010):O177.2
作者简介: 马玉梅,E-mail:mayumei@dlnu.edu.cn
引用本文:
马玉梅. 广义n-赋范空间中的Vogt定理[J]. 数学学报, 2020, 63(4): 329-334. Yu Mei MA. The Vogt Theorem in G-n-normed Spaces. Acta Mathematica Sinica, Chinese Series, 2020, 63(4): 329-334.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I4/329


[1] Aleksandrov A. D., Mappings of families of sets, Soviet Math. Dokl., 1970, 190(3):116-120.
[2] Chen X., Song M., Characterizations on isometries in linear n-normed spaces, Nonl. Anal., 2010, 72(3):1895-1901.
[3] Chu H., Choi S., Kang D., Mapping of conservative distance in linear n-normed spaces, Nonlinear Anal., 2009, 70(3):1168-1174.
[4] Chu H., Lee K., Park C., On the Aleksandrov problem in linear n-normed spaces, Nonlinear Anal., 2004, 59(7):1001-1011.
[5] Ekariani S., Gunawan H., Idris M., A contractive mapping theorem on the n-normed space of p-summable sequences, J. Math. Anal. Appl., 2013, 4(1):1-7.
[6] Gao J., On the Aleksandrov problem of distance preserving mapping, J. Math. Anal. Appl., 2009, 352:583-590.
[7] Gähler S., Lineare 2-normierte Räume (in German), Math. Nachr., 1965, 28:1-43.
[8] Huang X., Tan D., Mappings of preserving n-distance one in n-normed spaces, Aequat. Math., 2018, 92(3):401-413.
[9] Jia W., On the mappings preserving equality of 2-distance, Quaest. Math., 2010, 33(1):11-20.
[10] Ma Y., The Aleksandrov problem for unit distance preserving mapping, Acta Math. Sci. Ser. B Engl. Ed., 2000, 20(3):359-364.
[11] Ma Y., Isometriy on linear n-normed spaces, Ann. Acad. Sci. Fenn. Math., 2014, 39(2):973-981.
[12] Ma Y., The Aleksandrov problem and the Mazue-Ulam theorem on linear n-normed space, Bull. Korean Math. Soc., 2013, 50(5):1631-1637.
[13] Ma Y., Isometry on linear n-G-quasi normed spaces, Canad. Math. Bull., 2017, 60(2):350-363.
[14] Mazur S., Ulam S., Sur les transformationes isométriques d'espaces vectoriels normés (in Frcech), C. R. Acad. Sci., 1932, 194:946-948.
[15] Misiak A., n-inner product spaces, Math. Nach., 1989, 140(1):299-319.
[16] Park C., Rassias T. M., Isometries on linear n-normed spaces, J. Ineq. Pure. Appl. Math., 2006, 7(5):1-17.
[17] Park C., Cihangir A., A new version of Mazur-Ulam theorem under weaker conditions in linear n-normed spaces, J. Comp. Anal. Appl., 2014, 16(1):827-832.
[18] Park C., Rassias T. M., Isometric additive in generalized quasi-Banach spaces, Banach J. Math. Anal., 2008, 2(1):59-69.
[19] Rassias T. M., Šemrl P., On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc., 1993, 118(3):919-925.
[20] Vogt A., Maps which preserve equality of distance, Stud. Math., 1973, 45(1):43-48.
[21] Zheng F., Ren W., The Aleksandrov problem in quasi convex normed linear space, Acta Sci. Natur. Nankai Univ., 2014, 47(3):49-56.

[1]王瑞东, 王普. b(2)空间及b(2)空间上的等距映射[J]. 数学学报, 2019, 62(2): 303-318.
[2]马统一. λ-相交体的Busemann-Petty问题[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 263-278.
[3]方中山, 周泽华. 多圆柱上Bloch型空间之间的等距复合算子[J]. Acta Mathematica Sinica, English Series, 2012, (2): 273-280.
[4]蒋艳, 陈绍雄. 空间lp(Γ)(1 < p < ∞)和Banach空间E的单位球面之间等距算子的延拓[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 687-696.
[5]谭冬妮. 赋范空间单位球之间的1-Lipshcitz算子[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 981-988.
[6]伊继金Rui Dong Wang. On extension of isometries between the unit spheres of normed space $E$ and $l^p(p>1)$[J]. Acta Mathematica Sinica, English Series, 2009, 25(7): 0-0.
[7]陈丽珍;王建;. 严格凸赋范空间的c_0-和的单位球面之间的等距[J]. Acta Mathematica Sinica, English Series, 2009, (05): 191-196.
[8]谭冬妮;. AL~p-空间单位球面等距算子的延拓的一个注记[J]. Acta Mathematica Sinica, English Series, 2009, (04): 159-162.
[9]王瑞东. 二维严格凸赋范空间单位球面间等距映射的线性延拓[J]. Acta Mathematica Sinica, English Series, 2008, 51(5): 847-852.
[10]方习年;王建华;. 赋范空间E和l~1(Γ)的单位球面间等距映射的延拓[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 23-28.
[11]侯志彬;张丽娟;. AL~p-空间(1<p<∞)的单位球面间的非满等距映射的延拓[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1435-144.
[12]郭训香;. 自伴算子代数上的某些*-自同态的σ-弱混合性[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 995-998.
[13]刘锐;. Banach空间上单位球面间的1-Lipschitz映射[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1063-107.
[14]刘锐. 严格凸赋范空间的$\lee^\beta$-[J]. Acta Mathematica Sinica, English Series, 2007, 50(1): 227-232.
[15]王瑞东;. 非满等距映射的线性延拓[J]. Acta Mathematica Sinica, English Series, 2006, 49(6): 1335-133.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23614
相关话题/空间 数学 代数 理学院 球面