删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

对合导子构造的3-李双代数与3-Pre-李代数

本站小编 Free考研考试/2021-12-27

对合导子构造的3-李双代数与3-Pre-李代数 白瑞蒲1, 侯帅2, 亢闯闯31 河北大学数学与信息科学学院 河北省机器学习与智能计算重点实验室 保定 071002;
2 吉林大学数学科学学院 长春 130012;
3 南开大学数学科学学院 天津 300071 3-Lie Bialgebras and 3-pre-Lie Algebras Induced by Involutive Derivations Rui Pu BAI1, Shuai HOU2, Chuang Chuang KANG31 College of Mathematics and Information Science, Hebei University, Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, Baoding 071002, P. R. China;
2 School of Mathematics, Jilin University, Changchun 130012, P. R. China;
3 School of Mathematics, Nankai University, Tianjin 30071, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(445 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要研究具有对合导子的3-李代数的结构,证明了具有对合导子的m-维3-李代数A存在相容的3-Pre-李代数,且在2m-维半直积3-李代数Aad* A*上存在局部上循环3-李双代数结构.利用对合导子构造了3-李代数Aad* A*上的3-李Yang-Baxter方程的解和一类3-Pre-李代数,并构造了8-维和10-维局部上循环3-李双代数.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-07-03
MR (2010):O152.5
基金资助:河北省自然科学基金项目(A2018201126)
作者简介: 白瑞蒲,E-mail:bairuipu@hbu.edu.cn;侯帅,E-mail:hshuaisun@163.com;亢闯闯,E-mail:kangchuang2016@163.com
引用本文:
白瑞蒲, 侯帅, 亢闯闯. 对合导子构造的3-李双代数与3-Pre-李代数[J]. 数学学报, 2020, 63(2): 123-136. Rui Pu BAI, Shuai HOU, Chuang Chuang KANG. 3-Lie Bialgebras and 3-pre-Lie Algebras Induced by Involutive Derivations. Acta Mathematica Sinica, Chinese Series, 2020, 63(2): 123-136.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I2/123


[1] Bai R., Cheng Y., Lie J., et al., 3-Lie bialgebras, Acta Mathematica Scientia, 2014, 34(2):513-522.
[2] Bai R., Guo W., Lin L., et al., n-Lie bialgebras, Linear and Multilinear Algebra, 2016, 66(2):382-397.
[3] Bai C., Guo L., Sheng Y., Bialgebras, the classical Yang-Baxter equation and Manin triples for 3-Lie algebras, arXiv preprint arXiv, 2016, 1604.05996, 1-30.
[4] Bai R., Hou S., Gao Y., Structure of n-Lie Algebras with Involutive Derivations, International Journal of Mathematics and Mathematical Sciences, 2018, 2018:1-9.
[5] Bai R., Lin L., Zhang Y., et al., q-deformations of 3-Lie algebras, Algebra colloquium, 2017, 24(3):519-540.
[6] Bai R., Song G., Zhang Y., On classification of n-Lie algebras, Front. Math. China, 2011, 6(4):581-606.
[7] Chari V., Pressley A. N., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1995:2-3.
[8] Drinfeld V. G., Hamiltonian structures of Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. Doklady, 1983, 27(2):222-225.
[9] Filippov V., n-Lie algebras, Sib. Mat. Zh., 1985, 26:126-140.

[1]白瑞蒲, 陈双双, 程荣. 3-李代数的辛结构[J]. 数学学报, 2016, 59(5): 711-720.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23572
相关话题/代数 数学 结构 科学学院 南开大学