删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Brinkman-Forchheimer流体与Darcy流体结构稳定性

本站小编 Free考研考试/2021-12-27

Brinkman-Forchheimer流体与Darcy流体结构稳定性 李远飞, 郭战伟1. 广东财经大学华商学院, 广州 511300;
2. 广东交通职业技术学院, 广州 510507 Structural Stability of a Resonant Penetrative Convection in a Brinkman-Forchheimer Fluid Interfacing with a Darcy Fluid LI Yuanfei, GUO Zhanwei1. Huashang College Guangdong University of Finance & Economics, Guangzhou 511300, China;
2. Guangdong Institute of communications technology, Guangzhou 510507, China
摘要
图/表
参考文献
相关文章(0)
点击分布统计
下载分布统计
-->

全文: PDF(344 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要研究了在一个有界光滑的区域上存在两种不同的流体的结构稳定性问题.假设这两种流体的控制方程分别为粘性依赖于温度的Brinkman-Forchheimer方程与Darcy方程,并且Brinkman-Forchheimer型流体的内部存在一个热源或者散热器.运用能量分析的方法和微分不等式技术,获得了方程的解对热源的连续依赖性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-12-24
PACS:35K05
35K20
35K55
基金资助:广东省普通高校创新团队项目(2020WCXTD008).

引用本文:
李远飞, 郭战伟. Brinkman-Forchheimer流体与Darcy流体结构稳定性[J]. 应用数学学报, 2021, 44(2): 226-237. LI Yuanfei, GUO Zhanwei. Structural Stability of a Resonant Penetrative Convection in a Brinkman-Forchheimer Fluid Interfacing with a Darcy Fluid. Acta Mathematicae Applicatae Sinica, 2021, 44(2): 226-237.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I2/226


[1] Ewing (Ed.) R E. Problems arising in the modelling of processes for hydrocarbon recovery. In:Mathematics of Reservoir Simulation. Vol.I, pp. 3-34, Research Frontiers in Applied Mathematics, SIAM, 1984
[2] Ewing R E, Lin T.Falk R. Inverse and ill-posed problems in reservoir simulation. In:Inverse and Ill-posed problems, Notes and Reports on Mathematics in Science and Engineering, 1987, 483-497
[3] Payne L E. Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia, 1975
[4] Payne L E. Improved stability estimates for classes of ill-posed Cauchy problems. Applic. Analysis., 1985, 19:63-74
[5] Payne L E. On stabilizing ill-posed problems against errors in geometry and modelling. In:Proc. Conf. on Inverse and Ill-posed Problems, Strobhl., 1988, 399-416
[6] Payne L E, Straughan B. Error estimates for the temperature of a piece of cold ice, given data on only part of the boundary. Nonlinear Analysis, 1990, 14:443-452
[7] Payne L E, Straughan B. Comparison of viscous flows backward in time with small data. Znt. J. Nonlinear Mech., 1989, 24:209-214
[8] Payne L E, Straughan B. Improperly posed and nonstandard problems for parabolic partial differential equations. In:Mathematical Methods and Elasticity:the Ian Sneddon 70th Birthday Volume (Edited by G. EASON and R. W. OGDEN), Ellis-Horwoodi Chichester., 1989, 273-299
[9] Song J C. Some stabilitv criteria in fluid and solid mechanics. Ph.D. Thesis, Cornell University, 1988
[10] Strawha B. Uniqueness and stability for the conduction-diffusion solution to the Boussinesq equations backward in time. Proc. R. Sot. Lond., 1975, A347:435-446
[11] Straughan B. Continuous dependence on the heat source and nonlinear stability for convection with internal heat generation. Math. Meth. Appl. Sci., 1990, 13:373-383
[12] Straughan B. Continuous dependence on the heat source and non-linear stability in penetrative convection. International Journal of Non-Linear Mechanics, 1991, 26(2):221-231
[13] Morro A, Straughan B. Continuous dependence on the source parameters for convective motion in porous media. Nonlinear Analysis Theory Methods and Applications, 1992, 18(4):307-315
[14] Straughan B. Continuous Dependence on the Heat Source in Resonant Porous Penetrative Convection. Studies in Applied Mathematics, 2011, 127(3):302-314
[15] Gentile M, Straughan B. Structural stability in resonant penetrative convection in a Forchheimer porous material. Nonlinear Analysis Real World Applications, 2013, 14(1):397-401
[16] Liu Y. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Computer Model, 2009, 49:1401-1415
[17] Liu Y. Continuous dependence for a thermal convection model with temperature-dependent solubility. Appl. Math. Comput., 2017, 308:18-30
[18] Li Y, Lin C. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe. Appl. Math. Comput., 2014, 244:201-208
[19] Franchi F, Straughan B. Continuous dependence and decay for the Forchheimer equations. Proc. Roy. Soc. London A., 2003, 459:3195-3202
[20] 李远飞. 海洋动力学中二维粘性原始方程组解对热源的收敛性.应用数学和力学, 2020, 41(3):339-352(Li Y F. Convergence results on heat source for 2D viscous primitive equations of ocean dynamics. Applied Mathematics and Mechanics, 2020, 41(3):339-352)
[21] 李远飞, 郭连红. 具有边界反应Brinkman-Forchheimer型多孔介质的结构稳定性. 高校应用数学学报, 2019, 34(3):315-324(Li Y F, Guo L H. Structural stability on boundary reaction terms in a porous medium of BrinkmanForchheimer type. Applied Mathematics a Journal of Chinese Universities, 2019, 34(3):315-324)
[22] 李远飞. 大尺度海洋大气动力学三维黏性原始方程对边界参数的连续依赖性. 吉林大学学报(理学版), 2019, 57(5):1053-1059(LI Y F. Continuous Dependence on boundary parameters for three-dimensional viscous primitive equation of large-scale ocean atmospheric dynamics. Journal of Jilin University (Science edition), 2019, 57(5):1053-1059)
[23] Nield D A, Bejan A. Convection in Porous Media. Springer-Verlag, New York, 1992
[24] JONES I P. Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Sot., 1973, 73:231-238
[25] BEAVERS G S, JOSEPH D D. Boundary conditions at a naturally impermeable wall. J. Fluid Mech., SO, 1967:197-207
[26] Liu Y, Xiao Sh, Lin Y W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Mathematics and Computers in Simulation, 2018, 150:66-88
[27] Payne L E, Rodrigues J F, Straughan B. Effect of anisotropic permeability on Darcy's law. Math. Meth. Appl. Sci., 2001, 24:427-438
[28] Lin C, Payne L E. Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow. J. Math. Anal. Appl., 2008, 342:311-325

没有找到本文相关文献



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14887
相关话题/结构 应用数学 海洋 广州 统计