删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性

本站小编 Free考研考试/2021-12-27

具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性 张丽娟, 霍振香, 任晴晴, 王福昌防灾科技学院, 廊坊 065201 Stability of the Traveling Wave Solutions for Three Species Lotka-Volterra Competitive-cooperative System with Age Structure ZHANG Lijuan, HUO Zhenxiang, REN Qingqing, WANG FuchangInstitute of Disaster-Prevention, Langfang 065201, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(4101 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究一类具有年龄结构的Lotka-Volterra三种群竞争合作系统行波解存在性和稳定性.在拟单调情形下,利用解析半群和微分方程理论建立系统初值问题解R存在性及比较原理.然后,用加权能量法、比较原理等理论建立起该系统在初始扰动时除去x→-∞行波解指数衰减,证明单稳大波速行波解全局指数稳定.结果表明:行波解通常决定着初值问题解的长时间渐进行为,其稳定性揭示了种群之间竞争合作的现象,且结果能够被清晰的观测而不受外界因素干扰.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-04-03
PACS:62G05
62N01
基金资助:中央高校基本科研业务专项(ZY20215155);河北省教育厅教改项目(2019GJJG478)和廊坊市科学技术研究项目(2017013004);防灾科技学院教学团队建设(JT201707)资助项目.

引用本文:
张丽娟, 霍振香, 任晴晴, 王福昌. 具年龄结构和非局部扩散的三种群Lotka-Volterra竞争合作系统行波解稳定性[J]. 应用数学学报, 2021, 44(2): 251-268. ZHANG Lijuan, HUO Zhenxiang, REN Qingqing, WANG Fuchang. Stability of the Traveling Wave Solutions for Three Species Lotka-Volterra Competitive-cooperative System with Age Structure. Acta Mathematicae Applicatae Sinica, 2021, 44(2): 251-268.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I2/251


[1] Burie J B, Calonnec A, Ducrot A. Singular Perturbation Analysis of travelling Waves for a Model in Phytopathology. Mathematical Modelling of Natural Phenomena, 2008, 1(1):49-62
[2] Hosono Y. The minimal speed of traveling fronts for a diffusion Lotka-Volterra competition model. Bulletin of Mathematical Biology, 1998, 60(3):435-448
[3] Yukio K Fisher wave fronts for the Lotka-Volterra competition model with diffusion Nonlinear Analysis Theory Methods & Applications, 1997, 28(1):145-164
[4] Kan-On Y, Fang Q. Stability of monotone travelling waves for competition-diffusion equations. Japan Journal of Industrial and Applied Mathematics, 1996, 13(2):343-349
[5] 郭志华, 曹华荣. 具有年龄结构的Lotka-Volterra竞争系统行波解的稳定性. 应用数学和力学, 2018, 39(9):1051-1067(Zheng Z H, Cao H R. Stability of traveling wave fronts for delayed Lotka-Volterra competition Systems with stage structures. Applied Mathematics and Mechanics, 2018, 39(9):1051-1067)
[6] Al Omari J F M, Gourley S A. Stability and Traveling Fronts in Lotka-Volterra Competition Models with Stage Structure. SIAM Journal on Applied Mathematics, 2003, 63(6):2063-2086
[7] Li B, Zhang L. Travelling wave solutions in delayed cooperative systems. Nonlinearity, 2011, 24(6):1759-1776
[8] Tian G, Zhang G B. Stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system. Journal of Mathematical Analysis and Applications, 2017, 447(1):222-242
[9] Zhao G, Ruan S. Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion. Journal De Mathématiques Pures Et Appliquées, 2011, 95(6):627-671
[10] Contri, Benjamin. Pulsating fronts for bistable on average reaction-diffusion equations in a time periodic environment. Journal of Mathematical Analysis and Applications, 2016, 437(1):90-132
[11] Sheng W, Li W. Multidimensional stability of time-periodic planar traveling fronts in bistable reactiondiffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37(5):2681-2704
[12] Wang X H. Stability of planar waves in a Lotka-Volterra system. Applied Mathematics and Computation, 2015, 259(C):313-326
[13] Smith H L, Zhao X Q. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. Siam Journal on Mathematical Analysis, 2000, 31(3):514-534
[14] Mei M, So W H, Li M Y, et al. Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion. Proceedings of the Royal Society of Edinburgh Section a Mathematics, 2004, 134(3):579-594
[15] Huang A, Weng P, Huang Y. Stability of a three-dimensional diffusive Lotka-Volterra system of type-K with delays. Applicable Analysis, 2013, 92(11):2357-2374
[16] Hung L C. Traveling wave solutions of competitive-cooperative Lotoka-VColterra systems of three species. Nonlinear Anal. Real World Appl., 2011, 12:3691-3700
[17] Liang X, Zhao X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows, with applications. Communications on Pure & Applied Mathematics, 2010, 60(1):1-40
[18] Fang J, Zhao X Q. Bistable traveling waves for monotone semiflows with applications. Journal of the European Mathematical Society, 2015, 17(9):2243-2288
[19] Guo J S, Wu C H. Traveling wave fromt for a two-component lattice dynamical system arising in competition models. Journal of Differential Equations, 2012, 252(8):4357-4391
[20] Ma Z, Yuan R. Nonlinear stability of traveling wave fronts for delayed reaction-diffusion equation with nonlocal diffusion. Taiwan. J. Math., 2016, 20:871-896
[21] Martin R H, Smith H L. Abstract functional-differential equations and reaction-diffusion systems. Transactions of the American Mathematical Society, 1990, 321(1):1-44
[22] 张晓. Matlab微分方程高效解法:谱方法原理与实现. 北京:机械工业出版社,2016(Zhang X. Efficient Solution of Matlab Differential Equation:Principle and Implementation of Spectrum Method. Beijing:Machinery Industry Press, 2016)

[1]杨炜明, 廖书, 方芳. 带有非局部扩散项的霍乱传染病模型行波解的存在性[J]. 应用数学学报, 2021, 44(3): 440-458.
[2]王改霞, 刘纪轩, 李学志. 年龄结构SIQR传染病模型及稳定性[J]. 应用数学学报, 2018, 41(6): 777-787.
[3]王宗毅. 一类周期型反应扩散种群系统的空间动力学[J]. 应用数学学报(英文版), 2014, 37(2): 343-355.
[4]黄艳, 李杏. 轴突输运中的行波解[J]. 应用数学学报(英文版), 2013, 36(2): 293-297.
[5]夏静, 余志先, 袁荣. 一类具有非局部扩散的时滞Lotka-Volterra竞争模型的行波解[J]. 应用数学学报(英文版), 2011, 34(6): 1082-1093.
[6]吴庆华, 汤燕斌. 空间非局部带时滞的Hosono-Mimura模型的双稳行波解[J]. 应用数学学报(英文版), 2011, 34(6): 1136-1140.
[7]刘明惠, 管克英. 借助Lie群研究Burgers-KdV方程行波解的可积性[J]. 应用数学学报(英文版), 2011, 34(3): 400-412.
[8]柏萌, 崔尚斌. 非线性的带年龄结构的细胞增长模型全局解的存在唯一性[J]. 应用数学学报(英文版), 2010, 33(5): 910-919.
[9]周玲丽, 马彦君, 张鑫, 周义仓. 具有年龄结构的离散HIV/AIDS模型的全局分析[J]. 应用数学学报(英文版), 2010, 33(3): 466-478.
[10]柏萌, 崔尚斌. 非线性的带年龄结构的细胞增长模型全局解的存在唯一性[J]. 应用数学学报(英文版), 2010, 33(1): 910-919.
[11]方彬 李学志. 潜伏期具有传染性的年龄结构MSEIS流行病模型的稳定性[J]. 应用数学学报(英文版), 2008, 31(1): 110-125.
[12] 郭淑利, , 李学志. 具有垂直传染的年龄结构流行病模型的稳定性[J]. 应用数学学报(英文版), 2005, 28(4): 735-751.
[13]黄建华, 黄立宏. 高维格上时滞反应扩散方程的行波解[J]. 应用数学学报(英文版), 2005, 28(1): 100-113.
[14]黎勇. 一类趋化性生物模型行波解的存在性[J]. 应用数学学报(英文版), 2004, 27(1): 123-131.
[15]李俊平, 侯振挺, 刘再明, 张卫国. 随机脉冲干扰对B-CKdV方程扭状孤波解的影响[J]. 应用数学学报(英文版), 2001, 24(3): 425-432.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14889
相关话题/应用数学 系统 细胞 防灾科技学院 统计