删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带有非紧条件的拟线性Schrödinger-Poisson系统非平凡解的存在性

本站小编 Free考研考试/2021-12-27

带有非紧条件的拟线性Schrödinger-Poisson系统非平凡解的存在性 陈丽珍1, 冯晓晶2, 李刚31. 山西财经大学应用数学学院, 太原, 030006;
2. 山西大学数学科学学院, 太原, 030006;
3. 扬州大学数学科学学院, 扬州, 225002 The Existence of Nontrivial Solution for Quasilinear Schrödinger-Poisson Systemfour without Compactness Condition CHEN Lizhen1, FENG Xiaojing2, LI Gang31. Department of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, China;
2. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China;
3. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China
摘要
图/表
参考文献(0)
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(314 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了如下带有非紧条件的拟线性Schrödinger-Poisson系统

其中κ<0,λ>0,p≥12,fCRR), VCR3R).文中首先构造截断函数,利用集中紧性原理和逼近的方法,得到了截断后系统非平凡解的存在性;然后利用Moser迭代技巧,讨论上述系统非平凡解的存在性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-02-28
PACS:O176.3
基金资助:国家自然科学基金(12071266,12026218,12026217,11871064);山西省留学基金(2020-005);山西省自然科学基金(201801D211001,201801D221012,201901D211412)资助项目.

引用本文:
陈丽珍, 冯晓晶, 李刚. 带有非紧条件的拟线性Schrödinger-Poisson系统非平凡解的存在性[J]. 应用数学学报, 2021, 44(1): 1-15. CHEN Lizhen, FENG Xiaojing, LI Gang. The Existence of Nontrivial Solution for Quasilinear Schrödinger-Poisson Systemfour without Compactness Condition. Acta Mathematicae Applicatae Sinica, 2021, 44(1): 1-15.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I1/1


[1] Alves C O, Souto M A S, Soares S H M. Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condtion. J. Math. Anal. Appl., 2011, 377(2):584-592
[2] Azzollini A. Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity. J. Differential Equations., 2010, 249(7):1746-1763
[3] Ding L, Li L, Meng Y J, et al. Existence and asymptotic behaviour of ground state solution for quasilinear Schrödinger-Poisson systems in R3. Topol Methods Nonlinear Anal., 2016, 47(1):241-264
[4] Benmlih K, Kavian O. Existence and asymptotic behaviour of standing waves for quasilinear Schrodinger-Poisson systems in R3. Ann. I. H. Poincaré, 2008, 25(3):449-470
[5] Figueiredo G M, Siciliano G. Quasi-linear Schrödinger-Poisson system under an exponential critical nonlinearity:existence and asymptotic behaviour of solutions. Arch. Math., 2019, 112:313-327
[6] Figueiredo G M, Siciliano G. Existence and asymptotic behaviour of solutions for a quasi-linear Schrodinger-Poisson system with a critical nonlinearity. Z. Angew. Math. Phys, 2020, 71:1-21
[7] Do Ó J M, Miyagaki O H, Soares S H M. Soliton solution for quasilinear Schrödinger eqautions with critical growth. J. Differential Equations, 2010, 248(4):722-744
[8] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl., 2008, 345(1):90-108
[9] Zhao L G, Zhao F K. On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl., 2008, 346(1):155-169
[10] Severo U B, Gloss E, Da Silva E D. On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms. J. Differential Equations, 2017, 263(6):3550-3580
[11] Lins H F, Silva E A B. Quasilinear asymptotically periodic elliptic eqautions with critical growth. Nonlinear Anal, 2009, 71(7-8):2890-2905
[12] Willem M. Minimax Theorems. Boston:Birkhauser, 1996
[13] Wang Y J. A class of quasilinear Schrödinger equations with critical or supercritical exponts. Comput. Math. Appl., 2015, 70(4):562-572

[1]彭明燕, 夏福全. 双层变分不等式的Levitin-Polyak适定性[J]. 应用数学学报, 2016, 39(3): 362-372.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14854
相关话题/系统 应用数学 统计 科学学院 数学