删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

异构多智能体系统的非凸输入约束一致性

本站小编 Free考研考试/2021-12-27

异构多智能体系统的非凸输入约束一致性 黄辉1, 莫立坡2, 曹显兵21. 广东财经大学统计与数学学院, 广州 510320;
2. 北京工商大学数学与统计学院, 北京 100048 Consensus of Heterogeneous Multi-agent Systems with Nonconvex Input Constraints HUANG Hui1, MO Lipo2, CAO Xianbing21. School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China;
2. School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
摘要
图/表
参考文献
相关文章(4)
点击分布统计
下载分布统计
-->

全文: PDF(493 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究了连续时间异构多智能体系统在输入受非凸约束下的一致性问题.基于每个智能体可以获得的局部信息,利用压缩算子为每个智能体设计了分布式控制器,该控制器可以保证每个智能体的控制输入被约束在相应的非凸约束集之中.通过一个线性变换,首先将闭环系统变为一个易于处理的等价系统.然后,利用Metzler矩阵理论,证明了若联合通信拓扑具有有向生成树,则异构多智能体系统可以在输入受非凸约束的条件下实现一致.最后,通过仿真实验验证了理论的正确性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-03-04
PACS:O231
基金资助:国家自然科学基金(No.61973329)资助项目,北京市自然科学基金(No.Z180005)资助项目和北京市教委一般项目(No.KM201910011007;PXM2019_014213_000007)资助.

引用本文:
黄辉, 莫立坡, 曹显兵. 异构多智能体系统的非凸输入约束一致性[J]. 应用数学学报, 2019, 42(5): 595-605. HUANG Hui, MO Lipo, CAO Xianbing. Consensus of Heterogeneous Multi-agent Systems with Nonconvex Input Constraints. Acta Mathematicae Applicatae Sinica, 2019, 42(5): 595-605.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I5/595


[1] Moreau L. Stability of continuous-time distributed consensus algorithm. Proceedings of the IEEE Conference Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, 3998-4003
[2] Hong Y, Gao L, Chen D, Hu J. Lyapunov-based approach to multi-agent systems with switching jointly-connected interconnection. IEEE Transactions on Automatic Control, 2007, 52(5):943-948
[3] Ren W. On consensus algorithms for double-integrator dynamics. IEEE Transactions on Automatic Control, 2008, 53(6):1503-1509
[4] Li T, Zhang J F. Mean square average-consensus under measurement noises and fixed topologies:Necessary and sufficient conditions. Automatica, 2009, 45(8):1929-1936
[5] Lin P, Ren W, Song Y. Distributed multi-agent optimization subject to nonidentical constraints and communication delays. Automatica, 2016, 65:120-131
[6] Lin P, Ren W, Yang C, et al. Distributed optimization with nonconvex velocity constraints, nonuniform position constraints and nonuniform stepsizes. IEEE Transactions on Automatic Control, 2019, 64(6):2575-2582
[7] Zhang B, Jia Y. Singular Task-space synchronization of networked mechanical systems with uncertain parameters and communication delays. IEEE Transactions on Cybernetics, 2017, 47(8):2288-2298
[8] Zhao L, Yu J, Lin C. Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode. Applied Mathematics and Computation, 2017, 312:23-35
[9] Mo L, Guo S. Consensus of linear multi-agent systems with persistent disturbances via distributed output feedback. Journal of System Science and Complexity, 2019, 32(3):835-845
[10] Nediśc A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control, 2010, 55(4):922-938
[11] Lin P, Ren W, Farrell J A. Distributed continuous-time optimization:nonuniform gradient gains, finite-time convergence, and convex constraint set. IEEE Transactions on Automatic Control, 2017, 62(5):2239-2253
[12] Jia Y. Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Transactions on Control Systems Technology, 2000, 8(3):554-569
[13] Lin P, Ren W, Gao H. Distributed velocity-constrained consensus of discrete-time multi-agent systems with nonconvex constraints, switching topologies, and delays. IEEE Transactions on Automatic Control, 2047, 62(11):5788-5794
[14] Lin P, Ren W, Yang C, et al. Distributed consensus of second-order multiagent systems with nonconvex velocity and control input constraints. IEEE Transactions on Automatic Control, 2018, 63(4):1171-1176
[15] Mo L, Lin P. Distributed consensus of second-order multiagent systems with nonconvex input constraints. International Journal of Robust and Nonlinear Control, 2018, 28(11):3657-3664
[16] Zheng Y, Zhu Y, Wang L. Consensus of heterogeneous multi-agent systems. IET Control Theory and Application, 2011, 5(16):1881-1888
[17] Feng Y, Xu S, Lewis F, Zhang B. Consensus of heterogeneous first- and second-order multi-agent systems with directed communication topologies. International Journal of Robust and Nonlinear Control, 2015, 25(3):362-375
[18] Zheng Y, Wang L. Distributed consensus of heterogeneous multi-agent systems with fixed and switching topologies. International Journal of Control, 2012, 85(12):1-10
[19] Mo L, Niu G, Pan T. Consensus of heterogeneous multi-agent systems with switching jointly-connected interconnection. Physica A, 2015, 427:132-140
[20] 莫立坡, 潘婷婷. Markov切换拓扑下异构多智能体系统的均方一致性. 中国科学:信息科学, 2016, 46(11):1621-1632 (Mo L, Pan T. Mean-square consensus of heterogeneous multi-agent systems under Markov switching topologies. Scientia Sinica Informationis, 2016, 46(11):1621-1632)
[21] Zheng Y, Ma J, Wang L. Consensus of hybrid multi-agent systems. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):1359- 1365
[22] Huang H, Mo L, Guo S. Nonconvex constrained consensus of discrete-time heterogeneous multi-agent systems with arbitrary switching topology. IEEE ACCESS, 2019, 7:38157-38161
[23] Godsil C, Royle G. Algebraic graph theory. New York:Springer-Verlag, 2001

[1]黄毅卿, 陈翰馥. 子系统为ARMA和分段线性函数的Wiener系统的参数辨识[J]. 应用数学学报(英文版), 2008, 31(6): 961-980.
[2]张日权, 王静龙. 部分线性回归模型的M-估计[J]. 应用数学学报(英文版), 2005, 28(1): 151-157.
[3]曹显兵, 陈翰馥. ARMAX系统不外加输入激励的辨识[J]. 应用数学学报(英文版), 2003, 26(4): 577-589.
[4]杨孝平. 关于含非凸约束的变分问题[J]. 应用数学学报(英文版), 1996, 19(4): 533-540.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14652
相关话题/智能 应用数学 系统 统计 数学