删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统

本站小编 Free考研考试/2021-12-27

H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统 魏利1, 张瑞兰1, Ravi P. Agarwal2,31. 河北经贸大学数学与统计学学院, 石家庄 050061;
2. Department of Mathematics, Texas A & M University-Kingsville, Kingsville, TX 78363, USA;
3. Distinguished University Professor of Mathematics, Florida Institute of Technology, Melbourne, FL 32901, USA H Accretive Mappings and Nonlinear Elliptic Systems Involving Generalized (p, q)-Laplacain WEI Li1, ZHANG Ruilan1, Ravi P. Agarwal2,31. School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China;
2. Department of Mathematics, Texas A & M University-Kingsville, Kingsville, TX 78363, USA;
3. Distinguished University Professor of Mathematics, Florida Institute of Technology, Melbourne, FL 32901, USA
摘要
图/表
参考文献
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(324 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要利用H增生映射的性质,证明了含有广义(p,q)-Laplacian算子的非线性椭圆系统存在唯一解的结论.证明方法简单且研究结果展示了H增生映射和非线性椭圆系统之间的关系,推广和补充了以往的相关研究工作.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-04-29
PACS:O177.91
基金资助:国家自然科学基金(No.11071053);河北省自然科学基金(No.A2014207010);河北省教育厅科研重点项目(No.ZD2016024)和河北经贸大学科研重点项目(No.2016KYZ07)资助.

引用本文:
魏利, 张瑞兰, Ravi P. Agarwal. H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统[J]. 应用数学学报, 2018, 41(5): 653-666. WEI Li, ZHANG Ruilan, Ravi P. Agarwal. H Accretive Mappings and Nonlinear Elliptic Systems Involving Generalized (p, q)-Laplacain. Acta Mathematicae Applicatae Sinica, 2018, 41(5): 653-666.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I5/653


[1] 陈祖墀, 罗涛. 类p-Laplacian方程的特征值问题. 数学学报, 2003, 46:631-638 (Chen Z C, Luo T. The eigenvalue problem forp-Laplacian-like equations. Acta Math. Sinica, 2003, 46:631-638)
[2] Ubilla P. Multiplicity results for the 1-dimensional generalized p-Laplacian. J. Math. Anal. Appl., 1995, 190:611-623
[3] Wei L, He Z. The applications of theories of accretive operators to nonlinear elliptic boundary value problems in Lp-spaces. Nonlinear Analysis, 2001, 46:199-211
[4] Wei L, Zhou H Y. The existence of solutions of nonlinear boundary value problems involving the p-Laplacian operator in Ls-spaces. J. Syst. Sci. Complexity, 2005, 18:511-521
[5] Wei L, Ravi P Agarwal. Existence of solutions to nonlinear Neumann boundary value problems with generalizedp-Laplacian operator. Computers and Mathematics with Applications, 2008, 56(2):530-541
[6] Wei L, Ravi P Agarwal, P J Y Wong. Applications of perturbations on accretive mappings to nonlinear elliptic systems involving(p,q)-Laplacian. Nonlinear Oscillations, 2009, 12(2):199-212
[7] Calvert B D, Gupta C P. Nonlinear elliptic boundary value problems in Lp-spaces and sums of ranges of accretive operators. Nonlinear Analysis, 1978, 2:1-26
[8] Fang Y P, Huang N J.H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces. Applied Math. Letters, 2004, 17:647-653
[9] Zeidler E. Nonlinear Functional Analysis and its Applications (Ⅱ). Berlin:Springer-Verlag, 1992
[10] 李立康, 郭毓騊. 索伯列夫空间引论, 上海:上海科学技术出版社, 1981 (Li L K, Gou Y T. The Sobolev Space. Shanghai:Shanghai Science and Technology Press, 1981)
[11] Pascali D, Sburlan S. Nonlinear Mappings of Monotone Type. Sijthoff and Noordhoff International Publishers. The Netherlands, 1978
[12] Kato T. Perturbation Theory for Linear Operators, Second Corrected Printing of the Second Edition. Berlin:Springer-Verlag, 1984
[13] Wei L, Duan L L, Zhou H Y. Solution of nonlinear boundary value problems and its iterative construction. Abstract and Applied Analysis, 2012, ID 210325, 14 pages

[1]魏利, Ravi P. Agarwal. 含有广义p-Laplace算子的抛物边值[J]. 应用数学学报(英文版), 2014, 37(1): 1-12.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14541
相关话题/系统 科研 应用数学 上海 统计