删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

分数阶力学系统的正则变换理论

本站小编 Free考研考试/2021-12-27

分数阶力学系统的正则变换理论 张毅苏州科技大学土木工程学院, 苏州 215011 Theiry of Canonical Transformation for a Fractional Mechanical System ZHANG YiCollege of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(309 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要应用分数阶模型可以更准确地描述复杂系统的力学与物理行为,随着分数阶微积分在科学和工程的诸多领域的成功应用,传统的分析力学理论和方法需要拓展到含有分数阶微积分的系统.变换是分析力学研究的一个重要手段.本文研究分数阶力学系统的变换理论.基于Cuputo分数阶导数的定义,定义力学系统的Lagrange函数和Hamilton函数,在Hölder交换关系下建立了分数阶Hamilton原理,并由分数阶Hamilton原理通过变分运算导出分数阶Hamilton正则方程;建立了分数阶力学系统的正则变换理论,给出了四种基本形式的分数阶正则变换,并通过算例说明母函数在分数阶正则变换中的作用.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2011-12-30
PACS:O175.1
O316
基金资助:国家自然科学基金(No.10972151,11272227,11572212)资助项目.
引用本文:
张毅. 分数阶力学系统的正则变换理论[J]. 应用数学学报, 2016, 39(2): 249-260. ZHANG Yi. Theiry of Canonical Transformation for a Fractional Mechanical System. Acta Mathematicae Applicatae Sinica, 2016, 39(2): 249-260.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I2/249


[1] Oldham K B, Spanier J. The Fractional Calculus. San Diego: Academic Press, 1974
[2] Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999
[3] Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat., 2011, 16(3): 1140-1153
[4] Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E., 1996, 53(2): 1890-1899
[5] Riewe F. Mechanics with fractional derivatives. Phys. Rev. E., 1997, 55(3): 3581-3592
[6] Klimek M. Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslovak J. Phys., 2001, 51(12): 1348-1354
[7] Klimek M. Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslovak J. Phys., 2002, 52(11): 1247-1253
[8] Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl., 2002, 272: 368-379
[9] Agrawal O P. A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems. J. Appl. Mech., 2001, 68(2): 339-341
[10] Agrawal O P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor., 2007, 40: 6287-6303
[11] Baleanu D, Avkar T. Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento B, 2003, 119(1): 73-79
[12] Muslih S I, Baleanu D. Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl., 2005, 304: 599-606
[13] Rabei E M, Nawafleh K I, Hijjawi R S, Muslih S I, Baleanu D. The Hamilton formalism with fractional derivatives. J. Math. Ahal. Appl., 2007, 327: 891-897
[14] Baleanu D, Agrawal O P. Fractional Hamilton formalism within Caputo's derivative. Czechoslovak J. Phys., 2006, 56 (10-11): 1087-1092
[15] Rabei E M, Ababneh B S. Hamilton-Jacobi fractional mechanics. J. Math. Anal. Appl., 2008, 344: 799-805
[16] Rabei E M, Almayteh I, Muslih S I, Baleanu D. Hamilton-Jacobi formulation of systems within Caputo's fractional derivatives. Physica Scripta, 2008, 77(1): 015101
[17] Rabei E M, Rawashdeh I M, Muslih S, Baleanu D. Hamilton-Jacobi formulation for systems in terms of Riesz's fractional deriavatives. Int. J. Theor. Phys., 2011, 50: 1569-1576
[18] Muslih S I, Baleanu D. Formulation of Hamiltonian equations for fractional variational problems. Czechoslovak J. Phys., 2005, 55(6): 633-764
[19] Stanislavsky A A. Hamiltonian formalism of fractional systems. Eur. Phys. J. B., 2006, 49: 93-101
[20] Cresson J. Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys., 2007, 48: 033504
[21] Jumarie G. Lagranian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions. Chaos, Solitons and Fractals, 2007, 32: 969-987
[22] Jumarie G. Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost functions. J. Appl. Math. Computing, 2007, 23(1-2): 215-228
[23] EI-Zalan H A, Muslih S I, Rabei E M, Baleanu D. Hamilton formulation for continuous systems with second order derivatives. Int. J. Theor. Phys., 2008, 47: 2195-2202
[24] Jarad F, Baleanu D, Maraaba A T. Hamiltonian formulation of singular Lagrangian on time scales. Chin. Phys. Lett., 2008, 25(5): 1720-1723
[25] Baleanu D, Trujillo J I. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simulat., 2010, 15: 1111-1115
[26] Agrawal O P. Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl., 2010, 59: 1852-1864
[27] Baleanu D, Muslih S I, Rabei E M. Golmankhaneh Alireza K, Golmankhaneh Ali K. On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives. Romanian Reports in Physics, 2011, 63(1): 3-8
[28] Torres D F M, Almeida R. Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simulat., 2011, 16: 1490-1500
[29] Malinowska A B, Torres D F M. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl., 2010, 59: 3110-3116
[30] Tarasov V E. Fractional Dynamics. Beijing: Higher Education Press, 2010
[31] Goldstein H, Poole C, Safko J. Classical Mechanics. Beijing: Higher Education Press, 2005
[32] 梅凤翔, 刘端, 罗勇. 高等分析力学. 北京: 北京理工大学出版社, 1991 (Mei F X, Liu D, Luo Y. Advanced Analytical Mechanics. Beijing: Beijing Institute of Technology Press, 1991)

[1]韩祥临, 林万涛, 许永红, 莫嘉琪. 拟线性方程Robin问题的内层和边界层解[J]. 应用数学学报, 2016, 39(4): 531-536.
[2]田德生. 一类二阶时滞微分方程多个周期解的存在性[J]. 应用数学学报, 2016, 39(4): 537-546.
[3]谢溪庄, 陈梅香. 具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性[J]. 应用数学学报, 2016, 39(2): 213-222.
[4]吕小俊, 张天伟, 赵凯宏. 研究带有收获项的延迟Lotka-Volterra型区域竞争系统八个正周期解的存在性[J]. 应用数学学报, 2016, 39(2): 237-248.
[5]周晓燕, 普丽琼, 薛亚龙, 谢向东. 具反馈控制的单方不能独立生存合作系统稳定性研究[J]. 应用数学学报, 2016, 39(2): 298-305.
[6]孙树林, 段晓祥. 水体富营养化状态脉冲控制系统周期解的存在性和唯一性[J]. 应用数学学报, 2016, 39(1): 138-152.
[7]朱诗红. 极大多线性Bochner-Riesz算子的Morrey空间有界性[J]. 应用数学学报, 2016, 39(1): 153-160.
[8]王金华, 向红军. 无穷分数差分方程三点边值问题[J]. 应用数学学报, 2015, 38(6): 1029-1039.
[9]谭伟明, 周展. 一类二阶非线性差分方程同宿解的存在性[J]. 应用数学学报, 2015, 38(6): 1040-1049.
[10]葛志新, 陈咸奖. 一类含有叠层的线性奇摄动状态调节器问题[J]. 应用数学学报, 2015, 38(6): 1050-1058.
[11]黄记洲, 符策红. 广义Emden-Fowler方程的振动性[J]. 应用数学学报, 2015, 38(6): 1126-1135.
[12]韩祥临, 石兰芳, 许永红, 莫嘉琪. 分数阶双参数奇摄动非线性微分方程的渐近解[J]. 应用数学学报, 2015, 38(4): 721-729.
[13]权飞过, 郭真华. 具有较高级算子的两组分Camassa-Holm方程的柯西问题[J]. 应用数学学报, 2015, 38(3): 540-558.
[14]欧伯群, 姚晓洁. 一类中立型Cohen-Grossberg神经网络概周期解的存在唯一性[J]. 应用数学学报, 2015, 38(2): 212-221.
[15]刘有军, 张建文, 燕居让. 带分布时滞高阶中立型微分方程非振动解的存在性[J]. 应用数学学报, 2015, 38(2): 235-243.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14148
相关话题/应用数学 分数 力学 系统 统计