删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

捕食者带有疾病的入侵反应扩散捕食系统的空间斑图

本站小编 Free考研考试/2021-12-27

捕食者带有疾病的入侵反应扩散捕食系统的空间斑图 李成林云南省红河州蒙自市红河学院数学学院, 蒙自 661199 Spatiotemporal Pattern Formation of an Invasion-diffusion Predator-prey System with Disease in the Predator LI ChenglinDepartment of Applied Mathematics, Honghe University, Mengzi 661199, China
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(369 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文考察了一类在有界区域内在零流边界条件下捕食者带有疾病的入侵反应扩散捕食系统.在没有入侵反应扩散的条件下考虑了这类系统的局部和全局稳定性.找到了具有入侵反应扩散系统的非常数定态解存在性和不存在性的充分条件,其存在预示着空间斑图的形成.文中结论表明当物种的生存空间很大,捕食者的捕食趋向很小时,没有空间斑图出现,两物种不能共存且没有疾病广泛传播.当入侵反应扩散系数很大,自扩散系数固定时,空间斑图出现,两物种能共存,这时疾病也广泛存在.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2015-05-18
PACS:O175.1
基金资助:中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目成果(No.15XNL008).
引用本文:
李成林. 捕食者带有疾病的入侵反应扩散捕食系统的空间斑图[J]. 应用数学学报, 2016, 39(6): 832-846. LI Chenglin. Spatiotemporal Pattern Formation of an Invasion-diffusion Predator-prey System with Disease in the Predator. Acta Mathematicae Applicatae Sinica, 2016, 39(6): 832-846.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I6/832


[1] Anderson R M, May R M. Infectious Disease of Humans Dynamics and Control. Oxford: Oxford University Press, UK, 1991
[2] Venturino E. Epidemics in predator-prey models: disease in the prey, in Mathematical Population Dynamics: Analysis of Heterogeneity, 1995, 1: 381-393
[3] Xiao Y, Chen L. Modeling and analysis of a predator-prey model with disease in the prey. Mathematical Biosciences, 2001, 171(1): 59-82
[4] Hethcote H W, Wang W, Ma Z. A predator-prey model with infected prey. Journal of Theoretical Population Biology, 2004, 66: 259-268
[5] Malchow H, Petrovskii S V, Venturino E. Spatiotemporal Patterns in Ecology and Epidemiology. CRC, 2008
[6] Venturino E. The effects of diseases on competing species. Mathematical Biosciences, 2001, 174(2): 111-131
[7] Venturino E. The influence of diseases on Lotka-Volterra systems. The Rocky Mountain Journal of Mathematics, 1994, 24(1): 381-402
[8] Venturino E. Epidemics in predator-prey models: disease in the predators. IMA Journal of Mathematics Applied in Medicine and Biology, 2002, 19: 185-205
[9] Chattopadhyay J, Arino O. A predator-prey model with disease in the prey, Nonlinear Analysis. Theory, Methods and Applications, 1999, 36(6): 747-766
[10] Ni W M. Diffusion, cross-diffusion and their spike-layer steady states. Notices Amer. Math. Soc., 1998, 45(1): 9-18
[11] Okubo A. Diffusion and Ecological Problems: Mathematical Models. New York, Berlin: Springer-Verlag, 1980
[12] Ainseba B E, Bendahmane M, Noussair A. A reaction-diffusion system modeling predator-prey with prey-taxis. Nonlinear Anal. RWA, 2008, 9: 2086-2105
[13] Hang P Y, Wang M. Strategy and stationary pattern in a three-species predator-prey model. J. Differential Equations, 2004, 200: 245-273
[14] Ko W, Ryu K. A qualitative study on geneal Gause-type predator-prey models with non-monotonic functional response. Nonlinear Anal. RWA, 2009, 10: 2558-2573
[15] Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differential Equations, 2006, 231: 534-550
[16] May R M. Theoretical Ecology: Principles and Applictions. Oxford: Blackwell Sci. Publ, 1981
[17] Peng R, Shi J P. Non-existence of non-constant positive steady-states of two Holling-type-II predator-prey systems: strong interaction case. J. Differential Equations, 2009, 247: 866-886
[18] Wang M X. Non-constant positive steady states of the Sel'kov model. J. Differential Equations, 2003, 190: 600-620
[19] Wang M X, Wu Q. Positve solutions of a prey-predator moldels with predator saturation and competition. J. Math. Anal. Appl., 2008, 345: 708-718
[20] Wang X F. Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J. Math. Anal., 2000, 31(3): 535-560
[21] Yi F Q, Wei J J, Shi J P. Bifurcation and spatiotemporal patterns in a homo-geneous diffusive predator-prey systems. J. Differential Equations, 2009, 246: 1944-1977
[22] Zeng X. A ratio-dependent predator-prey system with diffusion. Nonlinear Anal. RWA, 2007, 7: 1062-1078
[23] Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J. Differerntial Equations, 1996, 131: 79-131
[24] Lin C S, Ni W M, Takagi I. Large amplitude ststionary solutions to a chemotaxis systems. J. Differential Equations, 1988, 72: 1-27

[1]陈远强. 随机扰动神经网络的脉冲控制[J]. 应用数学学报, 2017, 40(1): 16-26.
[2]宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48.
[3]王丽娜, 杨益民, 赵烨. 一类推广的森林模型波前解的稳定性[J]. 应用数学学报, 2017, 40(1): 73-84.
[4]葛照强, 冯德兴. Banach空间中广义发展算子的一致指数稳定性[J]. 应用数学学报, 2016, 39(6): 811-822.
[5]谢溪庄. 具有季节交替Lotka-Volterra合作模型的全局稳定性[J]. 应用数学学报, 2016, 39(5): 701-708.
[6]杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733.
[7]杨明华. 齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性[J]. 应用数学学报, 2016, 39(5): 748-761.
[8]谢溪庄, 陈梅香. 具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性[J]. 应用数学学报, 2016, 39(2): 213-222.
[9]马力, 王兢. 能量不等式和薛定谔流弱解的唯一性[J]. 应用数学学报, 2016, 39(2): 223-228.
[10]党艳霞, 蔡礼明, 李学志. 一类具有离散时滞的多菌株媒介传染病模型的竞争排斥[J]. 应用数学学报, 2016, 39(1): 100-120.
[11]谢华朝, 李素丽. 欧拉泊松方程平衡解的稳定性[J]. 应用数学学报, 2015, 38(4): 619-631.
[12]杨俊元, 王晓燕, 李学志. 具有非线性发生率和扩散的两菌株模型分析[J]. 应用数学学报, 2015, 38(3): 413-422.
[13]郑敏玲. 空间分数阶扩散方程的谱及拟谱方法[J]. 应用数学学报, 2015, 38(3): 434-449.
[14]李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52.
[15]苏春华. 脉冲随机泛函微分系统的稳定性[J]. 应用数学学报(英文版), 2014, 37(5): 835-846.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14217
相关话题/应用数学 空间 疾病 系统 统计