删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Banach空间中关于广义变分不等式的杂交投影算法

本站小编 Free考研考试/2021-12-27

Banach空间中关于广义变分不等式的杂交投影算法 刘英1, 何震1, Noor Muhammad Aslam21. 河北大学数学与信息科学学院, 保定 071002;
2. 信息技术学院数学系, 伊斯兰堡, 巴基斯坦 On Hybrid Projection Methods for General Variational Inequalities in Banach Spaces LIU Ying1, HE Zhen1, Noor Muhammad Aslam21. College of Mathematics and Information Science, Hebei University, Baoding 071002, China;
2. Mathematics Department, COMSATS Insitute of Information Technology, Park Road, Islamabad, Pakistan
摘要
图/表
参考文献(0)
相关文章(8)
点击分布统计
下载分布统计
-->

全文: PDF(287 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用杂交广义投影算法引进了一迭代序列来逼近Banach空间中一类广义变分不等式的解. 因为这类广义变分不等式包括古典变分不等式和相补问题作为特殊例子, 因此本文统一了以前一些相关结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2011-04-07
PACS:O177.91
基金资助:国家自然科学基金(11401157)资助项目.
引用本文:
刘英, 何震, Noor Muhammad Aslam. Banach空间中关于广义变分不等式的杂交投影算法[J]. 应用数学学报, 2016, 39(4): 495-504. LIU Ying, HE Zhen, Noor Muhammad Aslam. On Hybrid Projection Methods for General Variational Inequalities in Banach Spaces. Acta Mathematicae Applicatae Sinica, 2016, 39(4): 495-504.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I4/495


[1] Noor M A. General variational inequalities. Appl. Math. Lett., 1988, 1: 119-121
[2] Noor M A. General variational inequalities and nonexpansive mappings. J. Math. Anal. Appl., 2007, 331: 810-822
[3] Noor M A. Merit functions for general variational inequalities. J. Math. Anal. Appl., 2006, 316: 736-752
[4] Noor M A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 2000, 251: 271-229
[5] Noor M A. New extragradient-type methods for general variational inequalities. J. Math. Anal. Appl., 2003, 277: 379-395
[6] Noor M A. Some developments in general variational inequalities. Appl. Math. Comput., 2004, 152: 199-277
[7] Noor M A. Wiener-Hopf equations and variational inequalities. J. Optim. Theory Appl., 1993, 79: 197-206
[8] Noor M A, Huang Z. Three-step iterative methods for nonexpansive mappings and variational inequalities. Appl. Math. Comput., 2007, 187: 680-685
[9] Alber Ya. Metric and generalized projection operators in Banach spaces: properties and applications. In: Theory and Applications of Nonlinear Operators of Monotonic and Accretive Type, ed. by A. Kartsatos, Marcel Dekker, New York, 1996, 15-50
[10] Iiduka H, Takahashi W. Strong convergence theorems for nonexpan- sive mappings and inverse-strongly monotone mappings. Nonlinear Analysis, 2005, 61: 341-350
[11] Iiduka H, Takahashi W. Weak convergence of a projection algorithm for variational inequalities in a Banach space. J. Math. Anal. Appl., 2008, 339: 668-679
[12] Liu Y. Strong convergence theorem for relatively nonexpansive mapping and inverse-strongly-monotone mapping in a Banach space. Applied Mathematics and Mechanics (English Edition), 2009, 30: 925-932
[13] Liu Y. Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings. J. Glob. Optim., 2010, 46: 319-329
[14] Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space. Journal of Approximation Theory, 2005, 134: 257-266
[15] Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl., 1967, 20: 197-228
[16] Iiduka H, Takahashi W, Toyoda M. Approximation of solutions of variational inequalities for monotone mappings. Panamer. Math. J., 2004, 14: 49-61
[17] Liu F, Nashed M Z. Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Anal., 1998, 6: 313-344
[18] Noor M A. Extended general variational inequalities. Appl. Math. Lett., 2009, 22: 182-186
[19] Noor M A. Projection iterative methods for extended general variational inequalities. J. Appl. Math. Comput., 2010, 32: 83-95
[20] Noor M A, Noor K I. Sensitivity analysis of some quasi variational inequalities. J. Adv. Math. Stud., 2013, 6: 43-52
[21] Noor, M A, Noor K I, Khan A G. Some iterative schemes for solving extended general quasi variational inequalities. Appl. Math. Inf. Sci., 2013, 7(3): 917-925

[1]于海燕, 王洁, 郑神州. 自然增长下次椭圆A-调和方程的Hölder连续性估计[J]. 应用数学学报, 2016, 39(5): 689-700.
[2]王永丽, 韩丛英, 李田, 李明强. 求解不等式约束优化问题无严格互补松弛条件的one QP-Free新算法[J]. 应用数学学报(英文版), 2013, (1): 1-13.
[3]胡良根, 周先锋, 王金平. 奇异特征值问题正解的全局结构[J]. 应用数学学报(英文版), 2011, 34(1): 139-148.
[4]张国娟, 刘颖范, 施庆生. 非自包含不动点定理及其在投入产出方程中的应用[J]. 应用数学学报(英文版), 2010, 33(3): 509-513.
[5]阎爱玲, 修乃华. 欧几里德若当代数向量优化问题的谱标量化[J]. 应用数学学报(英文版), 2008, 31(5): 940-952.
[6]刘文斌, 李勇. 三阶向量微分方程的非线性振动[J]. 应用数学学报(英文版), 2004, 27(4): 723-729.
[7]殷洪友, 徐成贤. 一般多值向量变分不等式问题[J]. 应用数学学报(英文版), 2001, 24(2): 284-290.
[8]陈永林. 常用矩阵广义逆连续性的充要条件的统一形式[J]. 应用数学学报(英文版), 1999, 22(3): 433-437.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14169
相关话题/应用数学 空间 统计 优化 信息技术学院