摘要在临界Sobolev空间Ḣ1/2(R3)中,本文研究了三维不可压磁微极流体方程组的适定性.设(u0,ω0,b0)是Ḣ1/2(R3)中的小初值,则三维不可压磁微极流体方程组存在唯一整体强解(u,ω,b)∈C([0,+∞);Ḣ1/2(R3))∩L2((0,+∞);Ḣ3/2(R3))∩L4((0,+∞);Ḣ1(R3));设大初值(u0,ω0,b0)∈Ḣ1/2(R3),则存在一个正的时间T=T(u0,ω0,b0)使得三维不可压磁微极流体方程组在[0,T]内存在唯一局部强解(u,ω,b)∈C([0,T];Ḣ1/2(R3))∩L2((0,T];Ḣ3/2(R3))∩L4((0,T];Ḣ1(R3)),这些改进了Yuan J的结果(Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,Math.Methods Appl.Sci.,31(2008),1113-1130). |
[1] | Eringen A C. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 1966, 16:1-18 | [2] | Galdi G P, Rionero S. A note on the existence and uniqueness of solutions of the micropolar fluid equations. Internat. J. Engrg. Sci., 1977, 15:105-108 | [3] | Yamaguchi N. Existence of global strong solution to the micropolar fluid system in a bounded domain. Math. Methods Appl. Sci., 2005, 28:1507-1426 | [4] | Chen Q L, Miao C X. Global well-posedness for the micropolar fluid system in the critical Besov spaces. J. Differential Equations, 2012, 252:2698-2724 | [5] | Ferreira L C F. Villamizar-Roa E J. Micropolar fluid system in a space of distributions and large time behavior. J. Math. Anal. Appl., 2007, 332:1425-1445 | [6] | Yuan B Q. On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space. Proc. Amer. Math. Soc., 2010, 138:2025-2036 | [7] | Yuan B Q. Regularity of weak solutions to magneto-micropolar fluid equations. Acta Math. Sci. Ser. B Engl. Ed., 2010, 30:1469-1480 | [8] | Caflisch R E, Klapper I, Steele G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Comm. Math. Phys., 1997, 184:443-455 | [9] | Cannone M, Miao C X, Prioux N, Yuan B Q. The cauchy problem for the magneto-hydrodynamic system, self-similar solutions of nonlinear PDE. Banach Center Publications, Institute of Mathematics, Polish Academy of Science:Warszawa, 2006, 74:59-93 | [10] | Chen Q L, Miao C X, Zhang Z F. The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations. Comm. Math. Phys., 2007, 275:861-872 | [11] | Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal., 1972, 46:241-279 | [12] | Fan J S, Ni L D, Zhou Y. Local well-posedness for the Cauchy problem of the MHD equations with mass diffusion. Math. Methods Appl. Sci., 2011, 34(7):792-797 | [13] | He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differential Equations, 2005, 213:235-254 | [14] | Miao C X, Yuan B Q. On the well-posedness of the Cauchy problem for an MHD system in Besov spaces. Math. Methods Appl. Sci., 2009, 32:53-76 | [15] | Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math., 1983, 36:635-664 | [16] | Wu J H. Viscous and inviscid magnetohydrodynamics equations. J. Anal. Math., 1997, 73:251-265 | [17] | Wu J H. Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci., 2002, 12:395-413 | [18] | Wu J H. Regularity results for weak solutions of the 3D MHD equations. Discrete Contin. Dyn. Syst., 2004, 10:543-556 | [19] | Wu J H. Two regularity criteria for the 3D MHD equations. J. Differential Equations, 2010, 248:2263-2274 | [20] | Yuan B Q. On the blow-up criterion of smooth solutions to the MHD system in BMO space. Acta Mathematicase Applicatae Sinica, 2006, 22(3):413-418 | [21] | Zhou Y. Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst., 2005, 12:881-886 | [22] | Rojas-Medar M A. Magneto-micropolar fluid motion:existence and uniqueness of strong solution. Math. Nachr., 1997, 188:301-319 | [23] | Ortega-Torres E E, Rojas-Medar M A. Magneto-micropolar fluid motion:global existence of strong solution. Abstr. Appl. Anal., 1999, 4:109-125 | [24] | Yuan J. Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations. Math. Methods Appl. Sci., 2008, 31:1113-1130 | [25] | Kato T. Strong Lp-solutions of the Navier-Stokes equations in Rm, with applications to weak solutions. Math. Z., 1984, 187:471-480 | [26] | Kato T. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat., 1992, 22:127-155 | [27] | Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem. London:Chapman & Hall CRC Press, 2002 | [28] | Miao C X, Yuan B Q. Solutions to some nonlinear parabolic equations in pseudomeasure spaces. Math. Nachr., 2007, 280:171-186 | [29] | Miao C X. Harmonic analysis and application to partial differential equations. Beijing:Science Press. 2004, second edition (in Chinese). 苗长兴. 调和分析及其在偏微分方程中的应用. 北京:科学出版社, 2004, 第二版. | [30] | Stein E M, Weiss G. Tntroduction to Fourier Analysis on Euclidean Spaces. Princeton:Princeton University Press, 1971 |
[1] | 彭明燕, 夏福全. 双层变分不等式的Levitin-Polyak适定性[J]. 应用数学学报, 2016, 39(3): 362-372. | [2] | 权飞过, 郭真华. 具有较高级算子的两组分Camassa-Holm方程的柯西问题[J]. 应用数学学报, 2015, 38(3): 540-558. | [3] | 阿不都克热木·阿吉, 白丽克孜·玉努斯. 一类可修复计算机系统的定性分析[J]. 应用数学学报(英文版), 2012, (6): 1003-1017. | [4] | 刘继军. 一维介质双参数反演的适定性分析[J]. 应用数学学报(英文版), 1999, 22(4): 554-565. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14207
齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性杨明华江西财经大学信息管理学院,南昌330032ExistenceandAsymptoticStabilityfortheGeneralizedMagneto-HydrodynamicEquationsGeneralize ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中关于广义变分不等式的杂交投影算法刘英1,何震1,NoorMuhammadAslam21.河北大学数学与信息科学学院,保定071002;2.信息技术学院数学系,伊斯兰堡,巴基斯坦OnHybridProjectionMethodsforGeneralVariationalInequal ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27线性子空间上求解矩阵方程AXB+CXD=F的迭代算法周海林南京理工大学泰州科技学院,泰州225300AnIterativeAlgorithmforSolutionsofMatrixEquationAXB+CXD=FOverLinearSubspaceZHOUHailinTaizhouInstitut ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27度量空间上满足拟收缩条件的两个集值映射的公共不动点朴勇杰延边大学理学院数学系,延吉133002CommonFixedPointsforaPairofMulti-valuedMappingsSatisfyingQuasi-contractiveConditionsonMetricSpacesPIAOY ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性谢溪庄,陈梅香华侨大学数学科学学院,泉州362021StabilityinGilpin-AyalaCompetitionModelswithDistributedDelayandNonlocalSpatialEffectXIEXi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27IF可近似化空间李招文1,苏欣1,秦斌21.广西民族大学理学院,南宁530006;2.广西财经学院信息与统计学院,南宁530003IFApproximatingSpacesLIZhaowen1,SUXin1,QINBin21.CollegeofScience,GuangxiUniversityfor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于奇异酉空间的具有容错纠错能力的Pooling设计的构造刘雪梅,高星中国民航大学理学院,天津300300ConstructingError-correctingPoolingDesignswithSingularUnitarySpaceLIUXuemei,GAOXingCollegeofScien ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27全空间上一类奇异p-Laplace方程无穷多解的存在性杜刚喀什大学数学与统计学院,喀什844007ExistenceofInfinitelyManySolutionsforaClassofp-LaplaceEquationwithSingularPotentialinRNDUGangCollegeo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-272021年9月16日,北京清洁能源前沿研究中心成立仪式暨第二期“栖湖物质科学论坛”在物理所怀柔园区MA楼五层报告厅顺利举办。论坛邀请到物理所陈立泉院士做题为“电动中国:北京清洁能源前沿研究中心的使命”的报告。现场参加论坛活动的有工信部产业发展促进中心专项三处刘嘉副处长,物理所所长方忠院士、所务委员李 ... 中科院物理研究所 本站小编 Free考研考试 2021-12-272020年11月7日-8日,物理所与北京高压科学研究中心(北京高科)联合举办的高压前沿学术研讨会在物理所怀柔园区顺利召开。 高压技术在凝聚态物理、化学、材料、地球科学等领域的前沿研究中发挥了重要作用。为了促进物理所与北京高科在高压领域的学术交流和科研协作,来自物理所和北京高科的20余位研究人员在物 ... 中科院物理研究所 本站小编 Free考研考试 2021-12-27
|