删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

磁微极流体方程组在临界Sobolev空间强解的存在性

本站小编 Free考研考试/2021-12-27

磁微极流体方程组在临界Sobolev空间强解的存在性 原保全1, 马丽21. 河南理工大学数学与信息科学学院, 焦作 454000;
2. 中国矿业大学银川学院, 银川 750000 Existence of Strong Solution to the Magneto-micropolar Fluid Equations in Critical Sobolev Space YUAN Baoquan1, MA Li21. School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan 454000, China;
2. Yinchuan College, China University of Mining and Technology, Yinchuan, Ningxia 750000
摘要
图/表
参考文献(0)
相关文章(4)
点击分布统计
下载分布统计
-->

全文: PDF(320 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在临界Sobolev空间1/2(R3)中,本文研究了三维不可压磁微极流体方程组的适定性.设(u0ω0b0)是1/2(R3)中的小初值,则三维不可压磁微极流体方程组存在唯一整体强解(u,ω,b)∈C([0,+∞);1/2(R3))∩L2((0,+∞);3/2(R3))∩L4((0,+∞);1(R3));设大初值(u0ω0b0)∈1/2(R3),则存在一个正的时间T=Tu0ω0b0)使得三维不可压磁微极流体方程组在[0,T]内存在唯一局部强解(u,ω,b)∈C([0,T];1/2(R3))∩L2((0,T];3/2(R3))∩L4((0,T];1(R3)),这些改进了Yuan J的结果(Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,Math.Methods Appl.Sci.,31(2008),1113-1130).
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-11-17
PACS:O175.25
基金资助:国家自然科学基金(11471103)资助项目.
引用本文:
原保全, 马丽. 磁微极流体方程组在临界Sobolev空间强解的存在性[J]. 应用数学学报, 2016, 39(5): 709-718. YUAN Baoquan, MA Li. Existence of Strong Solution to the Magneto-micropolar Fluid Equations in Critical Sobolev Space. Acta Mathematicae Applicatae Sinica, 2016, 39(5): 709-718.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I5/709


[1] Eringen A C. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 1966, 16:1-18
[2] Galdi G P, Rionero S. A note on the existence and uniqueness of solutions of the micropolar fluid equations. Internat. J. Engrg. Sci., 1977, 15:105-108
[3] Yamaguchi N. Existence of global strong solution to the micropolar fluid system in a bounded domain. Math. Methods Appl. Sci., 2005, 28:1507-1426
[4] Chen Q L, Miao C X. Global well-posedness for the micropolar fluid system in the critical Besov spaces. J. Differential Equations, 2012, 252:2698-2724
[5] Ferreira L C F. Villamizar-Roa E J. Micropolar fluid system in a space of distributions and large time behavior. J. Math. Anal. Appl., 2007, 332:1425-1445
[6] Yuan B Q. On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space. Proc. Amer. Math. Soc., 2010, 138:2025-2036
[7] Yuan B Q. Regularity of weak solutions to magneto-micropolar fluid equations. Acta Math. Sci. Ser. B Engl. Ed., 2010, 30:1469-1480
[8] Caflisch R E, Klapper I, Steele G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Comm. Math. Phys., 1997, 184:443-455
[9] Cannone M, Miao C X, Prioux N, Yuan B Q. The cauchy problem for the magneto-hydrodynamic system, self-similar solutions of nonlinear PDE. Banach Center Publications, Institute of Mathematics, Polish Academy of Science:Warszawa, 2006, 74:59-93
[10] Chen Q L, Miao C X, Zhang Z F. The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations. Comm. Math. Phys., 2007, 275:861-872
[11] Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal., 1972, 46:241-279
[12] Fan J S, Ni L D, Zhou Y. Local well-posedness for the Cauchy problem of the MHD equations with mass diffusion. Math. Methods Appl. Sci., 2011, 34(7):792-797
[13] He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differential Equations, 2005, 213:235-254
[14] Miao C X, Yuan B Q. On the well-posedness of the Cauchy problem for an MHD system in Besov spaces. Math. Methods Appl. Sci., 2009, 32:53-76
[15] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math., 1983, 36:635-664
[16] Wu J H. Viscous and inviscid magnetohydrodynamics equations. J. Anal. Math., 1997, 73:251-265
[17] Wu J H. Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci., 2002, 12:395-413
[18] Wu J H. Regularity results for weak solutions of the 3D MHD equations. Discrete Contin. Dyn. Syst., 2004, 10:543-556
[19] Wu J H. Two regularity criteria for the 3D MHD equations. J. Differential Equations, 2010, 248:2263-2274
[20] Yuan B Q. On the blow-up criterion of smooth solutions to the MHD system in BMO space. Acta Mathematicase Applicatae Sinica, 2006, 22(3):413-418
[21] Zhou Y. Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst., 2005, 12:881-886
[22] Rojas-Medar M A. Magneto-micropolar fluid motion:existence and uniqueness of strong solution. Math. Nachr., 1997, 188:301-319
[23] Ortega-Torres E E, Rojas-Medar M A. Magneto-micropolar fluid motion:global existence of strong solution. Abstr. Appl. Anal., 1999, 4:109-125
[24] Yuan J. Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations. Math. Methods Appl. Sci., 2008, 31:1113-1130
[25] Kato T. Strong Lp-solutions of the Navier-Stokes equations in Rm, with applications to weak solutions. Math. Z., 1984, 187:471-480
[26] Kato T. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat., 1992, 22:127-155
[27] Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem. London:Chapman & Hall CRC Press, 2002
[28] Miao C X, Yuan B Q. Solutions to some nonlinear parabolic equations in pseudomeasure spaces. Math. Nachr., 2007, 280:171-186
[29] Miao C X. Harmonic analysis and application to partial differential equations. Beijing:Science Press. 2004, second edition (in Chinese). 苗长兴. 调和分析及其在偏微分方程中的应用. 北京:科学出版社, 2004, 第二版.
[30] Stein E M, Weiss G. Tntroduction to Fourier Analysis on Euclidean Spaces. Princeton:Princeton University Press, 1971

[1]彭明燕, 夏福全. 双层变分不等式的Levitin-Polyak适定性[J]. 应用数学学报, 2016, 39(3): 362-372.
[2]权飞过, 郭真华. 具有较高级算子的两组分Camassa-Holm方程的柯西问题[J]. 应用数学学报, 2015, 38(3): 540-558.
[3]阿不都克热木·阿吉, 白丽克孜·玉努斯. 一类可修复计算机系统的定性分析[J]. 应用数学学报(英文版), 2012, (6): 1003-1017.
[4]刘继军. 一维介质双参数反演的适定性分析[J]. 应用数学学报(英文版), 1999, 22(4): 554-565.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14207
相关话题/应用数学 空间 统计 北京 中国矿业大学