删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性

本站小编 Free考研考试/2021-12-27

齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性 杨明华江西财经大学信息管理学院, 南昌 330032 Existence and Asymptotic Stability for the Generalized Magneto-Hydrodynamic Equations Generalized Magneto-Hydrodynamic Equations in Fourier-Besov-Morrrey Spaces YANG MinghuaSchool of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330032, China
摘要
图/表
参考文献(0)
相关文章(8)
点击分布统计
下载分布统计
-->

全文: PDF(326 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要考虑了Rnn维广义磁流体力学方程组,当初值(u0,d0)∈Fr,λ,∞×Fr,λ,∞时,广义磁流体力学方程组对应的Cauchy问题的存在性和渐近稳定性,其中1≤r≤∞,0< λ< n或者 1< r≤∞,λ=0以及 n≥3,1/2<σ=α< n+2/4-n-λ/4rβ=2σ-1+n-λ/r-n.最后,得到了广义磁流体力学方程组一类自相似解的渐近稳定性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2015-03-05
PACS:O175.29
引用本文:
杨明华. 齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性[J]. 应用数学学报, 2016, 39(5): 748-761. YANG Minghua. Existence and Asymptotic Stability for the Generalized Magneto-Hydrodynamic Equations Generalized Magneto-Hydrodynamic Equations in Fourier-Besov-Morrrey Spaces. Acta Mathematicae Applicatae Sinica, 2016, 39(5): 748-761.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I5/748


[1] Duvaut G, Lions J. Inéquations en thermoé lasticité et magnétohydrodynamique. Arch. Rational. Mech. Anal., 1972, 46:241-279
[2] Kozono H. Weak and classical solutions of the two-dimensional magneto-hydrodynamic equations. J. Tohoku Math., 1989, 41:471-488
[3] Miao C, Yuan B, Zhang B. Well-posedness for the incompressible magneto-hydrodynamic system. Math. Methods Appl. Sci., 2007, 30:961-976
[4] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math., 1983, 36:635-664
[5] Cannone M, Karch G. Smooth or singular solutions to the Navier-Stokes system. J. Differ. Equ., 2004, 197(2):247-274
[6] Wu J. Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech., 2011, 13:295-205
[7] Ji E. On two-dimensional magnetohydrodynamic equations with fractional diffusion. Nonlinear Anal., 2013, 80:55-65
[8] Fan J, Nakamura G, Zhou Y. Global well-posedness of 2D MHD equations with fractional diffusion. preprint (2012)
[9] Tran C, Yu X, Zhai Z. On global regularity of 2D generalized magnetohydrodynamic equations. J. Differ. Equ., 2013, 254(10):4194-4216
[10] Fan J, Honaida M, Monaquel S, Nakamura G, Zhou Y. Global cauchy problem of 2D generalized MHD equations. Monatsh Math., 2014, 175:127-131
[11] On the global regularity of two-dimensional generalized magnetohydrodynamic system. arXiv:1306.2842v3
[12] Fujita H, Kato T. On the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal., 1964, 16:269-315
[13] Cannone M. A generalization of a theorem by Kato on Navier-Stokes equations. Rev. Mat. Iberoam, 1997, 13:515-541
[14] Planchon F. Solutions globales et comportement asymptotique pour leséquations de Navier-Stokes. Thése, Ecole Polytechnique, 1996
[15] Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv. in Math., 2001, 157:22-35
[16] Lions L. Quelques methods de resolution des problémes aux limites non linéaires. Paris:Dunod/Gauthier-Villars, 1969
[17] Wu J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm. Math. Phys., 2005, 263:803-831
[18] Wu J. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn. Partial Differ. Equ., 2004, 1:381-400
[19] Li P, Zhai Z. Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces. J. Funct. Anal., 2010, 259:2457-2519
[20] Zhai Z. Well-posedness for fractional Navier-Stokes equations in critical spaces close to B∞, ∞1-2σ(Rn). Dyn. Partial Differ. Equ., 2010, 7:25-44
[21] Kato, T. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Sco Bras. Mat., 1992, 22(2):127-155
[22] Lucas F, Lima L. Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces. Monatsh. Math., 2014, 175(4):491-509
[23] Konieczny P, Yoneda T. On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations. J. Differ. Equ., 2011, 250(10):3859-3873
[24] Lei Z, Lin F. Global mild solutions of Navier-Stokes equations. Comm. Pure Appl. Math., 2011, 64(9):1297-1304
[25] Cannone M, Wu G. Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces. Nonlinear Anal., 2012, 75(9):3754-3760
[26] Karch G. Scaling in nolinear parabolic equations. J. Math. Anal. Appl., 1999, 234:534-558
[27] Karch G, Prioux N. Self-similarity in viscous Boussinesq equations. Proc. Amer. Math. Soc., 2008, 136(3):879-888
[28] Kozono H, Sugiyama Y. The Keller-Segel system of parabolic-parabolic type with initial data in weak Ln/2(Rn) and its application to self-similar solutions. Indiana Univ. Math. J., 2008, 57:1467-1500
[29] Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 1934, 63:193-248

[1]杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733.
[2]李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52.
[3]钟金金, 李文学, 王克, 张春梅. 用多个Lyapunov函数证明随机Volterra积分方程的渐近稳定性[J]. 应用数学学报(英文版), 2014, 37(1): 59-68.
[4]阿不都克热木·阿吉, 白丽克孜·玉努斯. 一类可修复计算机系统的定性分析[J]. 应用数学学报(英文版), 2012, (6): 1003-1017.
[5]陈远强, 许弘雷. 脉冲控制系统的渐近稳定性分析[J]. 应用数学学报(英文版), 2010, 33(3): 479-489.
[6]邓义华. 一类中立型延迟积分微分方程线性θ-方法的渐近稳定性[J]. 应用数学学报(英文版), 2010, 33(3): 524-531.
[7]彭世国, 朱思铭. 一类无穷时滞微分系统的周期解和全局渐近稳定性[J]. 应用数学学报(英文版), 2004, 27(3): 416-422.
[8]Li Qiang JIANG, Zhi En MA, S. Rionero, F. Petrillo. 一类含分布时滞革新传播模型的稳定性[J]. 应用数学学报(英文版), 2003, 26(4): 682-692.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14210
相关话题/应用数学 流体力学 统计 空间 传播