摘要考虑了Rn上n维广义磁流体力学方程组,当初值(u0,d0)∈FṄr,λ,∞-β×FṄr,λ,∞-β时,广义磁流体力学方程组对应的Cauchy问题的存在性和渐近稳定性,其中1≤r≤∞,0< λ< n或者 1< r≤∞,λ=0以及 n≥3,1/2<σ=α< n+2/4-n-λ/4r,β=2σ-1+n-λ/r-n.最后,得到了广义磁流体力学方程组一类自相似解的渐近稳定性. |
[1] | Duvaut G, Lions J. Inéquations en thermoé lasticité et magnétohydrodynamique. Arch. Rational. Mech. Anal., 1972, 46:241-279 | [2] | Kozono H. Weak and classical solutions of the two-dimensional magneto-hydrodynamic equations. J. Tohoku Math., 1989, 41:471-488 | [3] | Miao C, Yuan B, Zhang B. Well-posedness for the incompressible magneto-hydrodynamic system. Math. Methods Appl. Sci., 2007, 30:961-976 | [4] | Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math., 1983, 36:635-664 | [5] | Cannone M, Karch G. Smooth or singular solutions to the Navier-Stokes system. J. Differ. Equ., 2004, 197(2):247-274 | [6] | Wu J. Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech., 2011, 13:295-205 | [7] | Ji E. On two-dimensional magnetohydrodynamic equations with fractional diffusion. Nonlinear Anal., 2013, 80:55-65 | [8] | Fan J, Nakamura G, Zhou Y. Global well-posedness of 2D MHD equations with fractional diffusion. preprint (2012) | [9] | Tran C, Yu X, Zhai Z. On global regularity of 2D generalized magnetohydrodynamic equations. J. Differ. Equ., 2013, 254(10):4194-4216 | [10] | Fan J, Honaida M, Monaquel S, Nakamura G, Zhou Y. Global cauchy problem of 2D generalized MHD equations. Monatsh Math., 2014, 175:127-131 | [11] | On the global regularity of two-dimensional generalized magnetohydrodynamic system. arXiv:1306.2842v3 | [12] | Fujita H, Kato T. On the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal., 1964, 16:269-315 | [13] | Cannone M. A generalization of a theorem by Kato on Navier-Stokes equations. Rev. Mat. Iberoam, 1997, 13:515-541 | [14] | Planchon F. Solutions globales et comportement asymptotique pour leséquations de Navier-Stokes. Thése, Ecole Polytechnique, 1996 | [15] | Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv. in Math., 2001, 157:22-35 | [16] | Lions L. Quelques methods de resolution des problémes aux limites non linéaires. Paris:Dunod/Gauthier-Villars, 1969 | [17] | Wu J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm. Math. Phys., 2005, 263:803-831 | [18] | Wu J. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn. Partial Differ. Equ., 2004, 1:381-400 | [19] | Li P, Zhai Z. Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces. J. Funct. Anal., 2010, 259:2457-2519 | [20] | Zhai Z. Well-posedness for fractional Navier-Stokes equations in critical spaces close to B∞, ∞1-2σ(Rn). Dyn. Partial Differ. Equ., 2010, 7:25-44 | [21] | Kato, T. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Sco Bras. Mat., 1992, 22(2):127-155 | [22] | Lucas F, Lima L. Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces. Monatsh. Math., 2014, 175(4):491-509 | [23] | Konieczny P, Yoneda T. On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations. J. Differ. Equ., 2011, 250(10):3859-3873 | [24] | Lei Z, Lin F. Global mild solutions of Navier-Stokes equations. Comm. Pure Appl. Math., 2011, 64(9):1297-1304 | [25] | Cannone M, Wu G. Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces. Nonlinear Anal., 2012, 75(9):3754-3760 | [26] | Karch G. Scaling in nolinear parabolic equations. J. Math. Anal. Appl., 1999, 234:534-558 | [27] | Karch G, Prioux N. Self-similarity in viscous Boussinesq equations. Proc. Amer. Math. Soc., 2008, 136(3):879-888 | [28] | Kozono H, Sugiyama Y. The Keller-Segel system of parabolic-parabolic type with initial data in weak Ln/2(Rn) and its application to self-similar solutions. Indiana Univ. Math. J., 2008, 57:1467-1500 | [29] | Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 1934, 63:193-248 |
[1] | 杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733. | [2] | 李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52. | [3] | 钟金金, 李文学, 王克, 张春梅. 用多个Lyapunov函数证明随机Volterra积分方程的渐近稳定性[J]. 应用数学学报(英文版), 2014, 37(1): 59-68. | [4] | 阿不都克热木·阿吉, 白丽克孜·玉努斯. 一类可修复计算机系统的定性分析[J]. 应用数学学报(英文版), 2012, (6): 1003-1017. | [5] | 陈远强, 许弘雷. 脉冲控制系统的渐近稳定性分析[J]. 应用数学学报(英文版), 2010, 33(3): 479-489. | [6] | 邓义华. 一类中立型延迟积分微分方程线性θ-方法的渐近稳定性[J]. 应用数学学报(英文版), 2010, 33(3): 524-531. | [7] | 彭世国, 朱思铭. 一类无穷时滞微分系统的周期解和全局渐近稳定性[J]. 应用数学学报(英文版), 2004, 27(3): 416-422. | [8] | Li Qiang JIANG, Zhi En MA, S. Rionero, F. Petrillo. 一类含分布时滞革新传播模型的稳定性[J]. 应用数学学报(英文版), 2003, 26(4): 682-692. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14210
Banach空间中关于广义变分不等式的杂交投影算法刘英1,何震1,NoorMuhammadAslam21.河北大学数学与信息科学学院,保定071002;2.信息技术学院数学系,伊斯兰堡,巴基斯坦OnHybridProjectionMethodsforGeneralVariationalInequal ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27线性子空间上求解矩阵方程AXB+CXD=F的迭代算法周海林南京理工大学泰州科技学院,泰州225300AnIterativeAlgorithmforSolutionsofMatrixEquationAXB+CXD=FOverLinearSubspaceZHOUHailinTaizhouInstitut ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27度量空间上满足拟收缩条件的两个集值映射的公共不动点朴勇杰延边大学理学院数学系,延吉133002CommonFixedPointsforaPairofMulti-valuedMappingsSatisfyingQuasi-contractiveConditionsonMetricSpacesPIAOY ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性谢溪庄,陈梅香华侨大学数学科学学院,泉州362021StabilityinGilpin-AyalaCompetitionModelswithDistributedDelayandNonlocalSpatialEffectXIEXi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27IF可近似化空间李招文1,苏欣1,秦斌21.广西民族大学理学院,南宁530006;2.广西财经学院信息与统计学院,南宁530003IFApproximatingSpacesLIZhaowen1,SUXin1,QINBin21.CollegeofScience,GuangxiUniversityfor ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于奇异酉空间的具有容错纠错能力的Pooling设计的构造刘雪梅,高星中国民航大学理学院,天津300300ConstructingError-correctingPoolingDesignswithSingularUnitarySpaceLIUXuemei,GAOXingCollegeofScien ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27全空间上一类奇异p-Laplace方程无穷多解的存在性杜刚喀什大学数学与统计学院,喀什844007ExistenceofInfinitelyManySolutionsforaClassofp-LaplaceEquationwithSingularPotentialinRNDUGangCollegeo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27何则荣,秦婉玉杭州电子科技大学运筹与控制研究所,杭州310018出版日期:2021-10-25发布日期:2021-12-24AnalysisofaPopulationModelIncorporatingSpatialDispersalintoHierarchicalAge-StructureHEZe ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27项莹,陈奇远浙江财经大学数据科学学院,杭州310018出版日期:2021-10-25发布日期:2021-12-24MeasurementofthePharmaceuticalManufacturingIndustry'sParticipationintheGlobalandDomesticValue ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27董苏雅拉图内蒙古财经大学计算机信息管理学院,呼和浩特010070出版日期:2021-10-25发布日期:2021-12-24PanicPropagationModelwiththeCharacteristicsofFloatingPopulationinStockMarketDONGSuyalatu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|