删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带固定效应面板数据空间误差模型的分位回归估计

本站小编 Free考研考试/2021-12-27

带固定效应面板数据空间误差模型的分位回归估计 戴晓文1, 晏振2, 田茂再1,3,41. 中国人民大学应用统计科学研究中心, 中国人民大学统计学院, 北京 100872;
2. 广西师范大学数学与统计学院, 桂林 541004;
3. 兰州财经大学统计学院, 兰州 730020;
4. 新疆财经大学统计与信息学院, 乌鲁木齐 830001 Estimation of Quantile Regression for the Panel Data Spatial Autoregressive Error Models With Fixed Effects DAI Xiaowen1, YAN Zhen2, TIAN Maozai1,3,41. Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing 100872, China;
2. School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China;
3. School of Statistics, LanZhou University of Finance and Economics, Lanzhou 730020, China;
4. School of Statistics and Informatics, Xinjiang University of Finance and Economics, Wulumuqi 830001, China
摘要
图/表
参考文献(0)
相关文章(1)
点击分布统计
下载分布统计
-->

全文: PDF(405 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了含有个体固定效应的面板数据空间误差模型,基于工具变量法给出了估计模型未知参数的分位回归方法.随机模拟结果显示,工具变量分位回归估计是处理空间面板数据的有效手段,且明显优于均值回归方法.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2015-06-30
PACS:O212.1
基金资助:中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目成果(No.15XNL008).
引用本文:
戴晓文, 晏振, 田茂再. 带固定效应面板数据空间误差模型的分位回归估计[J]. 应用数学学报, 2016, 39(6): 847-858. DAI Xiaowen, YAN Zhen, TIAN Maozai. Estimation of Quantile Regression for the Panel Data Spatial Autoregressive Error Models With Fixed Effects. Acta Mathematicae Applicatae Sinica, 2016, 39(6): 847-858.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I6/847


[1] LeSage J P. The theory and practice of spatial econometrics. University of Toledo, Toledo, Ohio, 1999
[2] Baltagi B H, Liu L. An improved generalized moments estimator for a spatial moving average error model. Economics Letters, 2011, 113(3): 282-284
[3] Kyung M, Ghosh S K. Maximum likelihood estimation for generalized conditionally autoregressive models of spatial data. Journal of the Korean Statistical Society, 2014, 43(3): 339-353
[4] 金立斌, 戴晓文, 石磊. 广义空间模型的异常值检验. 系统科学与数学, 2014, 34: 106-118 (Jin Libin, Dai Xiaowen, Shi Lei. Outlier Detection in General Spatial Model. Journal of Systems Science and Mathematical Sciences, 2014, 34: 106-118)
[5] 金立斌, 戴晓文, 石磊. 广义空间模型的方差齐性检验. 系统科学与数学, 2015, 35: 1436-1445 (Jin Libin, Dai Xiaowen, Shi Lei. Testing for heteroscedasticity in General Spatial Models. Journal of Systems Science and Mathematical Sciences, 2015, 35: 1436-1445)
[6] 戴晓文, 金立斌, 石磊. 空间误差模型的多个异常值得分检验. 数理统计与管理, 2015, 6: 1007-1015 (Dai Xiaowen, Jin Libin, Shi Lei. Score test for outliers in the Spatial Auroregressive Error Model. Journal of Applied Statistics and Management, 2015, 6: 1007-1015)
[7] Dai X W, Jin L B, Shi L, Yang C P, Liu S Z. Local influence analysis for General Spatial Models. Advances in Statistical Analysis, 2016, 100(3), 313-331
[8] Jin L B, Dai X W, Shi A Q, Shi L. Detection of Outliers in Mixed Regressive-Spatial Autoregressive Models. Communications in Statistics-Theory and Methods, 2016, 45(17): 5179-5192
[9] Dai X W, Jin L B, Shi A Q, Shi L. Outlier Detection and Accommodations in General Spatial Models. Statistical Methods and Applications, 2016, 25(3), 453-475
[10] Lee L, Yu J. Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 2010, 154(2): 165-185
[11] Zhang Y, Shen D. Estimation of semi-parametric varying-coefficient spatial panel data models with random-effects. Journal of Statistical Planning and Inference, 2015, 159: 64-80
[12] Lee L, Yu J. Efficient GMM estimation of spatial dynamic panel data models with fixed effects. Journal of Econometrics, 2014, 180: 174-197
[13] Koenker R. Quantile Regression for Longitudinal Data. Journal of Multivariate Analysis, 2004, 91: 74-89
[14] Tian M, Chen G. Hierarchical linear regression models for conditional quantiles. Science in China. Series A: Mathematics, Physics, Astronomy and Technological Sciences, 2006, 49(12): 1800-1815
[15] Galvao A, Montes-Rojas G. Penalized quantile regression for dynamic panel data. Journal of Statistical Planning and Inference. 2010, 140(11): 3476-3497
[16] Harding M, Lamarche C. A quantile regression approach for estimating panel data models using instrumental variables. Economics Letters, 2009, 104(3): 133-135
[17] Kato K, Galvao A, Montes-Rojas G V. Asymptotics for panel quantile regression models with individual effects. Journal of Econometrics, 2012, 170(1): 76-91
[18] Galvao A. Quantile regression for dynamic panel data with fixed effects. Journal of Econometrics, 2011, 164(1): 142-157
[19] Galvao A, Lamarche C, Lima L R. Estimation of censored quantile regression for panel data with fixed effects. Journal of the American Statistical Association, 2013, 108(503): 1075-1089
[20] Galvao A, Wang L. Efficient minimum distance estimator for quantile regression fixed effects panel data. Journal of Multivariate Analysis, 2015, 133: 1-26
[21] Koenker, R. Quantile Regression. New York: Cambridge University Press, 2005
[22] Chernozhukov V, Haasen C. Instrumental quantile regression inference for structural and treatment effects models. Journal of Econometrics, 2006,132(2): 91-525
[23] Chernozhukov V, Hansen C. Instrumental variable quantile regression: a robust inference approach. Journal of Econometrics, 2008, 142(1): 379-398
[24] van der Vaart A, Wellner J A. Weak Convergence and Empirical Processes. New York: Springer-Verlag, 1996

[1]吴洪. 检验nT都很大的固定效应动态面板模型的条件异方差性[J]. 应用数学学报(英文版), 2010, 33(2): 204-213.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14218
相关话题/空间 检验 统计 数据 数学