删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Keller-Segel抛物系统解的爆破现象

本站小编 Free考研考试/2021-12-27

Keller-Segel抛物系统解的爆破现象 李远飞广东财经大学华商学院, 广州 511300 Blow-up Phenomena for the Solutions to a Fully Parabolic Keller-Segel System LI YuanfeiSchool of Mathematic, South China of Technology, Guangzhou 511300, China
摘要
图/表
参考文献
相关文章(14)
点击分布统计
下载分布统计
-->

全文: PDF(256 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了Keller-Segel抛物系统在Robin边界条件下解的爆破问题.利用微分不等式技术,推导了一个一阶微分不等式,并由此不等式获得了在R3上Keller-Segel抛物系统解的爆破时间的下界.在一些适当的约束条件下,也获得了在RNN>3)上Keller-Segel抛物系统爆破解显式下界.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2016-06-17
PACS:O175.29
基金资助:广东高校优秀青年创新人才培养计划(自然科学)(2013LYM-0112)资助项目.
引用本文:
李远飞. Keller-Segel抛物系统解的爆破现象[J]. 应用数学学报, 2017, 40(5): 692-701. LI Yuanfei. Blow-up Phenomena for the Solutions to a Fully Parabolic Keller-Segel System. Acta Mathematicae Applicatae Sinica, 2017, 40(5): 692-701.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I5/692


[1] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol., 1970, 26:399-415
[2] Keller E F, Segel L A. Model for chemotaxis. J. Theoret. Biol, 1971, 30:225-234
[3] Keller E F, Segel L A. Traveling bands of chemotactic bacteria:a theoretical analysis. J. Theoret. Biol, 1971, 30:235-248
[4] Blanchet A, Dolbeault J, Perthame B. Two-dimensional Keller-Segel model in chemotaxis:Optimal critical mass and quantitative properties of solutions. Electron. J. Differential Equations, 2006, 44:1-33
[5] Corrias L, Perthame B. Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis in critical spaces. Math. Comt. Modelling, 2008, 47:755-764
[6] Hillen T, Painter K. User's guide to PDE models for chemotaxis. J. Math. Biol, 2009, 58:183-217
[7] Straughan B. Explosive Instabilities in Mechanics. Berlin:Springer, 1998
[8] Suzuki T. Free Energy and Self-Interacting Particles. Boston:Birkhuser, 2005
[9] Li Y F, Wang Y, Luo Sh. Lower bounds for Blow-up Time in Nonlinear Parabolic problems under Neumann Condition. J. Mathematics in Practice and Theory, 2015, 45(16):209-216
[10] Bilgin B A, Kalantarov V K. Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations. J. Math. Anal. Appl, 2013, 403:89-94
[11] Liu Y. Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions. Mathematical and Computer Modelling, 2013, 57:926-931
[12] Payne L E, Song J C. Blow-up and decay criteria for a model of chemotaxis. J. Math. Anal. Appl, 2010, 367:1-6
[13] Payne L E, Song J C. Lower bounds for blow-up in a model of chemotaxis. J. Math. Anal. Appl, 2012, 385:672-676
[14] Li J R, Zheng S N. A lower bound for blow-up time in a fully parabolic Keller-Segel system. Applied Mathematics Letters, 2013, 26:510-514
[15] Horstmann D, Winkler M. Boundedness vs. blow-up in a chemotaxis system. J. Differential Equations, 2005, 215:52-107
[16] Tao Y, Winkler M. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differential Equations, 2012, 25:692-715
[17] Payne L E, Philippin G A, VernierPiro S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I!I. Nonlinear Anal, 2010, 73:971-978

[1]雷轶菊, 欧祖军. 扩大设计的中心化L2-偏差的新下界[J]. 应用数学学报, 2017, 40(6): 841-848.
[2]吴秀兰, 李仲庆, 高文杰. 一类具正初始能量和变指数源渗流方程解的爆破及爆破时间下界估计[J]. 应用数学学报, 2017, 40(3): 400-408.
[3]朱世辉, 张健. 带势非线性Schrödinger方程爆破解的集中性质[J]. 应用数学学报, 2016, 39(6): 938-953.
[4]李远飞, 雷彩明. 具有非线性边界条件的趋化性模型解的爆破时间下界估计[J]. 应用数学学报, 2015, 38(6): 1097-1102.
[5]汪政红, 覃红. 离散偏差D(d;γ)及其在试验设计中的应用[J]. 应用数学学报, 2015, 38(5): 944-955.
[6]雷轶菊, 覃红. 三水平部分因析设计的中心化L2偏差均值的几个结果[J]. 应用数学学报, 2015, 38(3): 496-506.
[7]权飞过, 郭真华. 具有较高级算子的两组分Camassa-Holm方程的柯西问题[J]. 应用数学学报, 2015, 38(3): 540-558.
[8]方莉, 宋红丽, 郭真华. 一类具有奇异性与真空的非牛顿流局部强解的爆破准则[J]. 应用数学学报(英文版), 2013, 36(3): 502-515.
[9]甘在会, 张健. Klein-Gordon-Zakharov系统中的交叉强制变分方法[J]. 应用数学学报(英文版), 2008, 31(1): 180-189.
[10]甘在会, 张健. 带双势的非线性Klein-Gordon方程的整体解[J]. 应用数学学报(英文版), 2005, 28(3): 490-496.
[11]邢家省, 肖玲. 半导体漂移-扩散方程解的上下界整体估计[J]. 应用数学学报(英文版), 2005, 28(2): 341-352.
[12]戴求亿. 一类半线性抛物方程组的爆破临界指标[J]. 应用数学学报(英文版), 2002, 25(2): 339-346.
[13]林支桂, 谢春红. 具有非线性边界条件半线性热方程组解的爆破性质[J]. 应用数学学报(英文版), 1999, 22(2): 243-250.
[14]王国忠. 一类分形曲面的维数与可微性[J]. 应用数学学报(英文版), 1997, 20(1): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14358
相关话题/应用数学 系统 设计 统计 学报