删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非线性扰动广义NNV微分系统的孤子研究

本站小编 Free考研考试/2021-12-27

非线性扰动广义NNV微分系统的孤子研究 欧阳成1, 陈贤峰2, 莫嘉琪31. 湖州师范学院理学院, 湖州 313000;
2. 上海交通大学数学系, 上海 200240;
3. 安徽师范大学数学系, 芜湖 241003 Study for the Soliton of Nonlinear Disturbed Generalized NNV Differential System OUYANG Cheng1, CHEN Xianfeng2, MO Jiaqi31. Faculty of Science, Huzhou University, Huzhou 313000, China;
2. Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China;
3. Department of Mathematics, Anhui Normal University, Wuhu 241003, China
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(416 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要采用了一个简单而有效的技巧,研究了一类非线性扰动广义NNV微分系统.首先引入一个行波变换,将NNV系统转化为一组非线性常微分方程系统.其次用双曲函数待定系数法得到一个相应的典型系统的孤子解.然后构造一个广义泛函迭代同伦映射,由此构造一个特殊的渐近解的迭代关系式.并依次地求出原非线性扰动广义NNV微分系统的孤子渐近行波解.最后通过举例,说明了使用本方法得到的近似解简单而有效.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2016-04-01
PACS:O175.29
基金资助:国家自然科学基金(11202106)和浙江省自然科学基金(LY13A010005)资助项目.
引用本文:
欧阳成, 陈贤峰, 莫嘉琪. 非线性扰动广义NNV微分系统的孤子研究[J]. 应用数学学报, 2017, 40(3): 409-421. OUYANG Cheng, CHEN Xianfeng, MO Jiaqi. Study for the Soliton of Nonlinear Disturbed Generalized NNV Differential System. Acta Mathematicae Applicatae Sinica, 2017, 40(3): 409-421.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I3/409


[1] McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 2002, 415:603-608
[2] Gu Daifang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 1997, 275(7):805-807
[3] 马松华, 强继业, 方建平. (2+1)维Boiti-Leon-Pempinelli系统的混沌行为及孤立子间的相互作用. 物理学报, 2007, 56:620——626(Ma Songhua, Qiang Jiye, Fang Jianping. The interaction between solitons and chaotic behaviours of (2+1)-dimensional Boiti-Leon-Pempinelli system. Acta Phys. Sin., 2007, 56:620-626)
[4] Loutsenko I. The variable coefficient Hele-Shaw problem integrability and quadrature identities. Comm. Math. Phys., 2006, 268(2):465-479
[5] Gedalin M. Low-frequency nonlinear stationary waves and fast shocks:hydrodynamical description. Phys. Plasmas, 1998, 5(1):127-132
[6] Parkes E J. Some periodic and solitary travelling-wave solutions of the short-pulse equation. Chaos Solitons Fractals, 2008, 38(1):154-159
[7] 潘留仙, 左伟明. Landau-Ginzburg-Higgs方程的微扰理论. 物理学报, 2005, 54(1):1——5(Pan Liuxian, Zuo Weiming, Yan Jiaren. The theory of the perturbation for Landau-Ginzburg-Higgs equation. Acta Phys. Sin., 2005, 54(1):1-5)
[8] 封国林, 戴新刚, 王爱慧, 丑纪范. 混沌系统中可预报性的研究. 物理学报, 2001, 50(4):606——611(Feng Guolin, Dai Xingang, Wang Aihui, Chou Jifan. On the numerical predictability in the chaos system. Acta Phys. Sin., 2001, 50(4):606-611)
[9] Wang Mingliang. Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A, 1995, 199(3-4):169-172
[10] 吴国将, 韩家骅, 史良马, 张苗. 一般变换下双Jacobi椭圆函数展开法及应用. 物理学报, 2006, 55(8):3858——3863(Wu Guojiang, Han Jiahua, Shi Liangma, Zhang Miao. Double Jacobian elliptic function expansion method under a general function transform and its applications. Acta Phys. Sin., 2006, 55(8):3858-3863)
[11] 李向正, 李修勇, 赵丽英, 张金良. Gerdjikov-Ivanov方程的精确解. 物理学报, 2008, 57(4):2031——2034(Li Xiangzheng, Li Xouyong, Zhao Lihua, Zhang Jonliang. Exact solutions of Gerdjikov-Ivanov equation. Acta Phys. Sin., 2008, 57(4):2031-2034)
[12] 高亮, 徐伟, 唐亚宁, 申建伟. 一类广义Boussinesq方程和Boussinesq-Burgers方程新的显式精确解. 物理学报, 2007, 56(4):1860——1869(Gao Liang, Xu Wei, Tang Yaning, Shen Jianwei. New explicit exact solutions of one type of generalized Boussinesq equations and the Boussinesq-Burgers equation. Acta Phys. Sin., 2007, 56(4):1860-1869)
[13] 周振春, 马松华, 方建平, 任清褒. (2+1)维孤子系统的多孤子解和分形结构. 物理学报, 2010, 59(11):7540——7545(Zhou Zhenchun, Ma Songhua, Fang Jianping, Ren Qingbao. Multi-soliton solutions and fractal structures in a (2+1)-dimensional soliton system. Acta Phys. Sin., 2010, 59(11):7540-7545)
[14] 李帮庆, 马玉兰. (G'/G)展开法和(2+1)维非对称Nizhnik-Novikov-Veselov系统的新精确解. 物理学报, 2009, 58(7):4373——4378(Li Bangqing, Ma Yulan. (G'/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system. Acta Phys. Sin., 2009, 58(7):4373-4378)
[15] 何吉欢. 工程和科学计算中的近似非线性分析方法. 郑州:河南科学技术出版社, 2002(He Jihuan. Approximate Analytical Methods in Engineering and Sciences. Zhengzhou:Henan Science and Technology Press, 2002)
[16] Hovhannisyan G, Vulanovic R. Stability inequalities for one-dimensional singular perturbation problems. Nonlinear Stud., 2008, 15(4):297-322
[17] Barbu L, Cosma E. Elliptic regularizations for the nonlinear heat equation. J. Math. Anal. Appl., 2009, 351(2):392-399
[18] Ramos M. On singular perturbation of superlinear elliptic systems. J. Math. Anal. Appl., 2009, 352(1):246-258
[19] Mo Jiaqi. Singular perturbation for a class of nonlinear reaction diffusion system. Science in China, Ser A, 1989, 32(11):1306-1315
[20] Mo Jiaqi, Lin Wantao. Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation. Chin. Phys., 2008, 17:370-372
[21] Mo Jiaqi, Lin Wantao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations. J. Sys. Sci. & Complexity, 2008, 20(1):119-128
[22] Mo Jiaqi, Lin Yihua, Lin Wantao, Chen Lihua. Perturbed solving method for interdecadal sea-air oscillator model. Chin. Geographical Sci., 2012, 22(1):42-47
[23] Mo Jiaqi. Variational iteration solvi ng method for a class of generalized Boussinesq equation. Chin. Phys. Lett., 2009, 26(6):060202
[24] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11):7397——7401(Mo Jiaqi, Zhang Weijiang, Chen Xianfeng. Variational iteration method for solving a class of strongly nonlinear evolution equations. Acta Phys. Sin., 2009, 58(11):7397-7401)
[25] Mo Jiaqi. Homotopiv mapping solving method for gain fluency of a laser pulse amplifier. Science in China, Ser. G, 2009, 52(7):1007-1010
[26] Mo Jiaqi, Lin Wantao, Wang Hui. Variational iteration solution of a sea-air oscillator model for the ENSO. Progress in Natural Science, 2007, 17(2):230-232
[27] 史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动展方程的解. 应用数学和力学, 2014, 35(9):1046——1054(Shi Juanrong, Shi Lanfang, Mo Jiaqi. The solutions for a class of nonlinear disturbed evolution equations. Appl. Math. Mech., 2014, 35(9):1046-1054)
[28] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法. 物理学报, 2006, 55(4):1562——1564(Wu Qingkuan. The shock solution for a class of the nonlinear equations by the Sinc-Galerkin method. Acta Phys. Sin., 2006, 55(4):1562-1564)
[29] 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解. 物理学报, 2013, 62(6):060201(Ouyang Cheng. Lin Wantao, Cheng Rongjun, Mo Jiaqi. A class of asymptotic solution of sea-air time delay oscillator for the El Nino-southern oscillation mechanism. Acta Phys, Sin., 2013, 62(6):060201)
[30] 欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类尘埃等离子体孤波解. 物理学报, 2014, 63(11):110203(Ouyang Cheng. Yao Jingsun, Shi Lanfang, Mo Jiaqi. Solitary wave solution for a class of dusty plasma. Acta Phys, Sin., 2014, 63(11):110203)
[31] Ouyang Cheng, Cheng Lihua, Mo Jiaqi. Solving a class of burning disturbed problem with shock layer. Chin. Phy. B, 2012, 21(5):050203
[32] Liao Shijun. Beyond Perturbation -Introduction to the Homotopy Analysis Method. Boca Raton:Chapman & Hall/CRC, 2003
[33] Liao Shijun. Beyond Perturbation:Introduction to the Homotopy Analysis Method. New York:CRC Press Co, 2004
[34] Liao Shijun. Homotopy Analysis Method in Nonlinear Differential Equations. Heidelberg:Springer & Higher Education Press, 2012

[1]钟建新, 刘建国. 改进的G'/G-展开式法在广义Kuramoto-Sivashinsky方程中的应用[J]. 应用数学学报, 2017, 40(1): 136-143.
[2]杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733.
[3]罗李平, 罗振国, 杨柳. 具脉冲扰动和时滞效应的拟线性抛物系统的(强)振动分析[J]. 应用数学学报, 2016, 39(1): 21-30.
[4]张树文, 蔡明夷. 具脉冲输入毒素的单种群随机干扰模型[J]. 应用数学学报(英文版), 2014, 37(5): 797-804.
[5]李晓静, 周友明, 鲁世平. 一类二阶n-维中立型泛函微分系统周期解存在性问题[J]. 应用数学学报(英文版), 2011, 34(3): 560-573.
[6]张澜, 阿拉坦仓. 一类缺项算子矩阵的谱扰动[J]. 应用数学学报(英文版), 2010, 33(1): 59-65.
[7]彭世国 朱思铭. 具有无穷时滞的中立型积分微分系统的平稳振荡[J]. 应用数学学报(英文版), 2005, 28(3): 536-545.
[8]刘炳文, 黄立宏. 一类二阶非线性微分系统解的有界性[J]. 应用数学学报(英文版), 2004, 27(4): 617-623.
[9]Zheng De DAI, Lin YANG, Jian HUANG. 非扰动耗散Hamiltonian振幅波方程的整体吸引子[J]. 应用数学学报(英文版), 2004, 27(4): 577-592.
[10]彭世国, 朱思铭. 一类无穷时滞微分系统的周期解和全局渐近稳定性[J]. 应用数学学报(英文版), 2004, 27(3): 416-422.
[11]李必文, 张正球, 王志成. 一个微生物生态模型的周期解[J]. 应用数学学报(英文版), 2004, 27(2): 210-217.
[12]徐兆, 陈树辉, 黄武林. 极限环的表达式和计算[J]. 应用数学学报(英文版), 2003, 26(4): 612-621.
[13]陈小山, 黎稳. 关于特征值的Hoffman-Wielandt型相对扰动界[J]. 应用数学学报(英文版), 2003, 26(3): 396-401.
[14]周正新. 二次微分系统的反射函数及其周期解[J]. 应用数学学报(英文版), 2002, 25(3): 0-0.
[15]邓圣福, 张伟年. 一个微生物生态模型分岔的周期轨[J]. 应用数学学报(英文版), 2001, 24(4): 509-516.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14335
相关话题/系统 应用数学 物理 微生物 统计