删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

时间模上一类二阶非线性延迟动力系统的振动性分析

本站小编 Free考研考试/2021-12-27

时间模上一类二阶非线性延迟动力系统的振动性分析 杨甲山梧州学院信息与电子工程学院, 梧州 543002 Oscillation Analysis of Second-order Nonlinear Delay Dynamic Equations on Time Scales YANG JiashanSchool of Information and Electronic Engineering, Wuzhou University, Guangxi Zhuang Autonomous Region, Wuzhou 543002, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(365 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要研究时间模上一类二阶非线性延迟Emden-Fowler型动力系统的振动性,利用时间模上的有关理论和广义的Riccati变换及多种不等式技巧,在条件∫t0+∞[A-1se-b/As,t0)]1/λs <+∞下建立了该系统振动的若干新的准则,这些准则推广且改进了现有文献中的一些结果,最后,举例说明了定理的条件是比较宽松的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-01-06
PACS:O175.7
基金资助:国家自然科学基金项目(No.51765060),硕士学位授予单位立项建设项目(桂学位[2013]4号),梧州学院2016年校级科研重点项目(No.2016B008)资助.

引用本文:
杨甲山. 时间模上一类二阶非线性延迟动力系统的振动性分析[J]. 应用数学学报, 2018, 41(3): 388-402. YANG Jiashan. Oscillation Analysis of Second-order Nonlinear Delay Dynamic Equations on Time Scales. Acta Mathematicae Applicatae Sinica, 2018, 41(3): 388-402.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I3/388


[1] Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math., 1990, 18:18-56
[2] Bohner M, Peterson A. Dynamic equations on time scales,an introduction with applications. Boston:Birkhauser, 2001
[3] Sahiner Y. Oscillation of second order delay differential equations on time scales. Nonlinear Analysis, TMA, 2005,63:e1073-e1080
[4] Agarwal R P, Bohner M, Saker S H. Oscillation of second order delay dynamic equations. Canadian Applied Mathematics Quarterly, 2005, 13(1):1-18
[5] Agarwal R P, Bohner M, O'Regan D, et al. Dynamic equations on time scales:a survey. J. Comput. Appl. Math., 2002, 141(1-2):1-26
[6] Grace S R, Bohner M, Agarwal R P. On the oscillation of second-order half-linear dynamic equations. J. Difference Equ. Appl., 2009, 15:451-460
[7] Hassan T S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl. Math. Comput., 2011, 217:5285-5297
[8] Erbe L, Hassan T S, Peterson A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl. Math. Comput., 2008, 203:343-357
[9] Zhang Q X. Oscillation of second-order half-linear delay dynamic equations with damping on time scales. Journal of Computational and Applied, 2011, 235:1180-1188
[10] 张全信, 高丽. 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则. 中国科学(数学), 2010, 40(7):673-682(Zhang Q X, Gao L. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales. Sci. Sin. Math., 2010, 40(7):673-682)
[11] 张全信, 高丽, 刘守华. 时间尺度上具阻尼项的二阶半线性时滞动力方程振动性的新结果. 中国科学(数学), 2013, 43(8):793-806(Zhang Q X, Gao L, Liu S H. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales. Sci. Sin. Math., 2013, 43(8):793-806)
[12] 杨甲山. 时间测度链上动力方程振动性的进展. 安徽大学学报(自然科学版), 2018, 42(1):26-37(Yang J S. Advances of oscillation of dynamic equations on time scales. Journal of Anhui University (Natural Science Edition), 2018, 42(1):26-37)
[13] Bohner M, LI T X. Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math., 2015, 58:1445-1452
[14] Saker S H. Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math., 2005, 177:375-387
[15] Erbe L, Peterson A, Saker S H. Oscillation criteria for second order nonlinear delay dynamic equations. J. Math. Anal. Appl., 2007, 333:505-522
[16] Han Z L, Li T X, Sun S R, et al. On the oscillation of second-order neutral delay dynamic equations on time scales. African Diaspora Journal of Mathematics, 2010, 9(1):76-86
[17] Sun S, Han Z, Zhang C. Oscillation of second order delay dynamic equations on time scales. J. Appl. Math. Comput., 2009, 30:459-468
[18] Han Z L, Sun S R, Si B. Kamenev-type oscillation criteria for second-order nonlinear delay dynamic equations on time scales. J. Math. Anal. Appl., 2007, 334:847-858
[19] Li T X, Han Z L, Zhang C H, et al. On the oscillation of second-order Emden-Fowler neutral differential equations. J. Appl. Math. Comput., 2011, 37:601-610
[20] Sun S R, Han Z L, Zhang C H. The oscillation criteria of second-order Emden-Fowler neutral delay dynamic equations on time scales. Journal of Shanghai Jiaotong University, 2008, 42(12):2070-2075
[21] Bohner M. Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math., 2005, 18:289-304
[22] Saker S H, Agarwal R P, O'Regan D. Oscillation of second-order damped dynamic equations on time seales. J. Math. Anal. Appl., 2007, 330:1317-1337
[23] Chen W, Han Z, Sun S, Li T. Oscillation behavior of a class of second-order dynamic equations with damping on time scales. Discrete Dyn. Nat. Soc., 2010:1-15
[24] 孙一冰, 韩振来, 孙书荣等. 时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性. 应用数学学报, 2013, 36(3):480-494(Sun Y B, Han Z L, Sun S R, et al. Oscillation of a class of second order half-linear neutral delay dynamic equations with damping on time scales. Acta Mathematicae Applicatae Sinica, 2013, 36(3):480-494)
[25] Yang J S, Qin X W, Zhang X J. Oscillation criteria for certain second-order nonlinear neutral delay dynamic equations with damping on time scales. Mathematica Applicata, 2015, 28(2):439-448
[26] Yang J S. Oscillation criteria for certain third-order delay dynamic equations. Advances in Difference Equations, 2013, 2013:178-193
[27] Han Z L, Li T X, Sun S R, et al. Oscillation behavior of solutions of third-order nonlinear delay dynamic equations on time scales. Commun. Korean Math. Soc., 2011, 26(3):499-513
[28] Güvenilir A F. Nizigiyimana F.Oscillation criteria for second-order quasi-linear delay dynamic equations on time scales. Advances in Difference Equations, 2014, 2014:45
[29] Agarwal R P, Bohner M, Li T, et al. Oscillation criteria for second-order dynamic equations on time scales. Appl. Math. Lett., 2014, 31:34-40
[30] Li T X, Saker S H. A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(12):4185-4188
[31] Yang J S, Qin X W. Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales. Advances in Difference Equations, 2015, 2015(1):97
[32] 杨甲山. 时间测度链上一类二阶Emden-Fowler型动态方程的振荡性. 应用数学学报, 2016, 39(3):334-350(YANG J S. Oscillation for a class of second-order emden-fowler dynamic equations on time scales. Acta Mathematicae Applicatae Sinica, 2016, 39(3):334-350)

[1]赵环环, 刘有军, 燕居让. 带分布时滞偶数阶微分方程组的振动性[J]. 应用数学学报, 2017, 40(4): 612-622.
[2]杨甲山. 时间测度链上一类二阶Emden-Fowler型动态方程的振荡性[J]. 应用数学学报, 2016, 39(3): 334-350.
[3]罗李平, 罗振国, 杨柳. 具脉冲扰动和时滞效应的拟线性抛物系统的(强)振动分析[J]. 应用数学学报, 2016, 39(1): 21-30.
[4]邱仰聪, 王其如. 具可变号系数的二阶时标动态方程的振动准则[J]. 应用数学学报, 2016, 39(1): 121-129.
[5]罗李平, 曾云辉, 罗振国. 具脉冲和时滞效应的拟线性双曲系统的振动性定理[J]. 应用数学学报(英文版), 2014, 37(5): 824-834.
[6]田亚州, 蔡远利, 孟凡伟. 含有连续分布时滞偶阶微分方程的振动性[J]. 应用数学学报(英文版), 2013, 36(6): 1080-1093.
[7]郭松柏, 沈有建. 一阶中立型差分方程振动的充分必要条件[J]. 应用数学学报(英文版), 2013, 36(5): 840-850.
[8]孙一冰, 韩振来, 孙书荣, 张超. 时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性[J]. 应用数学学报(英文版), 2013, 36(3): 480-494.
[9]钟记超, 欧阳自根, 邹树梁. 一类带有阻尼项的二阶半线性中立型微分方程解的振动准则[J]. 应用数学学报(英文版), 2012, (6): 972-983.
[10]商妮娜, 秦惠增. 二阶非线性带有阻尼项微分方程的一个振荡定理[J]. 应用数学学报(英文版), 2012, (1): 121-129.
[11]王冬梅, 徐志庭. 二阶拟线性中立型差分方程的振动性[J]. 应用数学学报(英文版), 2011, 34(3): 537-553.
[12]王桂霞, 孙炯. 带转移条件的Strum-Liouville问题特征函数的振动性[J]. 应用数学学报(英文版), 2010, 33(3): 395-411.
[13]郭志明, 庾建设, 雷光龙. 具有时滞的利率-流通量方程的建立及其应用[J]. 应用数学学报(英文版), 2004, 27(4): 702-709.
[14]常玉. 一类四阶差分方程振动性的充分必要条件[J]. 应用数学学报(英文版), 2000, 23(3): 466-471.
[15]房辉. 奇数阶中立型时滞微分方程的线性化振动性[J]. 应用数学学报(英文版), 1997, 20(3): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14486
相关话题/应用数学 动力 系统 统计 科学