删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析

本站小编 Free考研考试/2021-12-27

具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析 王虎1, 田晶磊2, 孙玉琴3, 于永光11. 中央财经大学统计与数学学院, 北京 100081;
2. 北京交通大学理学院, 北京 100044;
3. 内蒙古大学鄂尔多斯应用技术学院, 内蒙古 017000 Stability Analysis of Fractional Stage-structured Predator-prey Systems with Delay WANG Hu1, TIAN Jinglei2, SUN Yuqin3, YU Yongguang11. School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China;
2. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China;
3. Mathematics Group, Ordos institute of Technology, Inner Mongolia University, Ordos 100190, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(547 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了具有阶段结构的时滞分数阶捕食者-食饵系统稳定性,给出了两类具有阶段结构的时滞分数阶捕食者-食饵系统,并详细的对这两类系统进行了稳定性分析,得到了平衡点的渐近稳定性条件和参数稳定区间.此外,给出了两个数值实验,证明了理论结果的有效性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2015-02-10
PACS:O212.7
基金资助:国家自然科学基金(11371049)和中央财经大学青年教师发展基金(QJJ1520)资助项目.
引用本文:
王虎, 田晶磊, 孙玉琴, 于永光. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42. WANG Hu, TIAN Jinglei, SUN Yuqin, YU Yongguang. Stability Analysis of Fractional Stage-structured Predator-prey Systems with Delay. Acta Mathematicae Applicatae Sinica, 2018, 41(1): 27-42.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I1/27


[1] Lotka A. Elements of Physical Biology. Maryland:Baltimore, 1925
[2] Volterra V. Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Memorie dell'Accademia Lincei, 1926, 2:31-113
[3] 陈兰荪, 陈健. 非线性生物动力系统. 北京:科学出版社, 1993(Chen L S, Chen J. Dynamical of Nonlinear Biology Systems. Beijing:Science Press, 1993)
[4] 陆征一, 周义仓. 数学生物学进展. 北京:科学出版社, 2006(Lu Z Y, Zhou Y C. Advances in Mathematical Biology. Beijing:Science Press, 2006)
[5] 陈兰荪, 孟新柱, 焦建军. 生物动力学. 北京:科学出版社, 2009(Chen L S, Meng X Z, Jiao J J. Dynamical of Biology Systems. Beijing:Science Press, 2009)
[6] Van den Driessche P, Zeeman M L. Three-dimensional competitive Lotka-Volterra systems with no periodic orbits. SIAM Journal on Applied Mathematics, 1998, 58:227-234
[7] Ahmad S, Lazer A C. Average conditions for global asymptotic stability in a non-autonomous LotkaVolterra system. Nonlinear Analysis, 2000, 40:37-49
[8] Yan X P, Chu Y D. Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system. Journal of Computational and Applied Mathematics, 2006, 196:198-210
[9] Kar T K, Matsuda H. Global dynamics and controllability of a harvested predator-prey system with Holling type Ⅲ functional response. Nonlinear Analysis:Hybrid Systems, 2007, 1:59-67
[10] Teng Z, Chen L. Global asymptotic stability of periodic Lotka-Volterra systems with delays. Acta Mathematiea Scientia, 2000, 45(8):1081-1095
[11] Fang N, Chen X X. Permanence of a discrete multispecies Lotka-Volterra competition predator-prey system with delays. Nonlinear analysis:Real world Applications, 2008, 9:2185-2195
[12] Lu G, Lu Z. Permanence for two species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences and Engineering, 2008, 5:477-484
[13] Zhang J F. Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay. Applied Mathematical Modelling, 2012, 36:1219-1231
[14] 刘胜强, 陈兰荪. 阶段结构种群生物模型与研究. 北京:科学出版社, 2010(Liu S Q, Chen L S. Dynamics analysis of stage-structured predator-prey model. Beijing:Science Press, 2010)
[15] Xiao J Y, Chen L. Global stability of a predator-prey system with stage structure for the predator. Acta Mathematica Sinica, English Series, 2004, 20:63-70
[16] Song X, Guo H. Global stability of a stage-structured predator-prey system. International Journal of Biomathematics, 2008, 1:313-326
[17] Chakraborty K, Jana S. Kar T K. Global dynamics and bifurcation in a stage structured predator-prey fishery model with harvesting. Applied Mathematics and Computation, 2012, 218:9271-9290
[18] Bandyopadhyay M, Banerjee S. A stage-structured predator-prey model with discrete time delay. Applied Mathematics and Computation, 2006, 182:1385-1398
[19] Xu R, Chaplain M A J, Davidson F A. A Lotka-Volterra type food chain model with stage structure and time delays. Journal of Mathematical Analysis and Applications, 2006, 315:90-105
[20] Cai J L, Song X Y. Permanence and stability of a predator-prey system with stage structure for predator. Journal of Computational and Applied Mathematics, 2007, 201:356-366
[21] Hu H, Huang L. Stability and Hopf bifurcation in a delayed predator-prey system with stage structure for prey. Nonlinear Analysis:Real world Applications, 2010, 11:2757-2769
[22] Xu R. Global dynamics of a predator-prey model with time delay and stage structure for the prey. Nonlinear Analysis:Real World Applications, 2011, 12:2151-2162
[23] Ahmed E, El-Sayed A M A, El-Saka H A A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applications, 2007, 325:542-553
[24] Das S, Gupta P K. A mathematical model on fractional Lotka-Volterra equations. Journal of Theoretical Biology, 2011, 277:1-6
[25] Abbas S, Banerjee M, Momani S. Dynamical analysis of fractional-order modified logistic model. Computers Mathematics with Applications, 2011, 62(3):1098-1104
[26] Javidi M, Nyamoradi N. Dynamic analysis of a fractional order predator-prey interaction with harvesting. Applied Mathematical Modelling, 2013, 37:8946-8956
[27] Elsadany A A, Matouk A E. Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. Journal of Applied Mathematics and Computing, 2015, 49(1-2):269-283
[28] Song P, Zhao H Y, Zhang X B. Dynamic analysis of a fractional order delayed predator-prey system with harvesting. Theory in Biosciences, 2016, 135(1):59-72
[29] Rihan F A, Lakshmanan S, Hashish A H. Rakkiyappan R. Ahmed E. Fractional-order delayed predatorprey systems with Holling type-Ⅱ functional response. Nonlinear Dynamics, 2015, 80(1-2):777-789
[30] Huang C D, Cao J D, Xiao M. Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Applied Mathematics and Computation, 2017, 293:293-310
[31] Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:John Wiley and Sons, 1993
[32] Podlubny I. Fractional Differential Equations. London:Academic Press, 1999
[33] Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations. Elsevier, 2006
[34] Bhalekar S, Varsha D. A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. Journal of Fractional Calculus and Applications, 2011, 1(5):1-9
[35] Deng W H, Li C P, Lü J H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 2007, 48(4):409-416
[36] Wang H, Yu Y G, Wen G G, Zhang S. Stability analysis of fractional-order neural networks with time delay. Neural Processing Letters, 2015, 42:479-500
[37] Wang H, Yu Y G, Wen G G. Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Networks, 2014, 55:98-109
[38] 王虎. 时滞分数阶Hopfield神经网络的动力学分析. 北京交通大学博士论文, 2015(Wang H. Dynamical analysis of fractional-order Hopfield neural networks with time delays. Beijing:PhD thesis of Beijing Jiaotong University, 2015)
[39] Jalilian Y, Jalilian R. Existence of solution for delay fractional differential equations. Mediterranean Journal of Mathematics, 2013, 10(4):1731-1747

[1]刘炳文, 田雪梅, 杨孪山, 黄创霞. 具有非线性死亡密度和连续分布时滞的Nicholson飞蝇模型的周期解[J]. 应用数学学报, 2018, 41(1): 98-109.
[2]张文彪, 易鸣. 一类抽象非线性分数阶微分方程的Cauchy问题[J]. 应用数学学报, 2017, 40(6): 874-882.
[3]王亚平, 刘立山, 吴永洪. 有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报, 2017, 40(5): 752-769.
[4]孔丽丽, 李录苹. 具有不同时滞的两种捕食者-食饵恒化器模型的定性分析[J]. 应用数学学报, 2017, 40(5): 676-691.
[5]王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572.
[6]赵环环, 刘有军, 燕居让. 带分布时滞偶数阶微分方程组的振动性[J]. 应用数学学报, 2017, 40(4): 612-622.
[7]胡秀玲, 张鲁明. 空间四阶-时间分数阶扩散波方程的一个新的数值分析方法[J]. 应用数学学报, 2017, 40(4): 543-561.
[8]张福珍, 刘文斌, 王刚. 一类非线性分数阶微分方程多点积分边值问题解的存在性[J]. 应用数学学报, 2017, 40(2): 229-239.
[9]赵才地, 阳玲, 刘国威, 许正雄. 一类时滞非牛顿流方程组在二维无界区域上的整体适定性与拉回吸引子[J]. 应用数学学报, 2017, 40(2): 287-311.
[10]严勇. 一类含有最大值项的二元时滞积分不等式的推广[J]. 应用数学学报, 2017, 40(1): 85-98.
[11]王丽娜, 杨益民, 赵烨. 一类推广的森林模型波前解的稳定性[J]. 应用数学学报, 2017, 40(1): 73-84.
[12]宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48.
[13]陈远强. 随机扰动神经网络的脉冲控制[J]. 应用数学学报, 2017, 40(1): 16-26.
[14]葛照强, 冯德兴. Banach空间中广义发展算子的一致指数稳定性[J]. 应用数学学报, 2016, 39(6): 811-822.
[15]李成林. 捕食者带有疾病的入侵反应扩散捕食系统的空间斑图[J]. 应用数学学报, 2016, 39(6): 832-846.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14438
相关话题/应用数学 分数 系统 北京 结构