删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类分数阶中立型延迟微分方程的渐近稳定性

本站小编 Free考研考试/2021-12-27

一类分数阶中立型延迟微分方程的渐近稳定性 杨水平惠州学院数学系, 惠州 516007 Asymptotic Stability of a Class of Fractional Neutral Delay Differential Systems YANG ShuipingDepartment of Mathematics, Huizhou Univerisity, Huizhou 516007
摘要
图/表
参考文献(0)
相关文章(8)
点击分布统计
下载分布统计
-->

全文: PDF(386 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文讨论了一类分数阶线性中立型延迟微分方程初值问题的解渐近稳定的充分必要条件.另外,本文还设计了数值求解这类分数阶中立型延迟微分方程初值问题的Hermite三次样条配置方法,并获得了局部截断误差结果.数值结果也验证了本文的理论结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-12-24
PACS:O241.8
基金资助:国家自然科学基金(11501238,11401248);广东省自然科学基金(2016A030313119,2015A030310410);惠州学院自然科学基金(hzuxl201420)资助项目.
引用本文:
杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733. YANG Shuiping. Asymptotic Stability of a Class of Fractional Neutral Delay Differential Systems. Acta Mathematicae Applicatae Sinica, 2016, 39(5): 719-733.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I5/719


[1] Uchaikin V V, Sibatov R T. Fractional theory for transport in disordered semiconductors. Commun. Nonlinear Sci. Numer. Simul., 2008, 13(4):715-727
[2] Tarasov V E, Zaslavsky G M. Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul., 2006, 11(8):885-898
[3] Weilbeer, M. Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background. Technical University of Braunschweig, Braun-schweig, 2005
[4] Podlubny, I. Fractional Differential Equations. New York:Academic Press, 1999
[5] Deng, W.H. Numerical algorithm for the time fractional Fokker-Planck equation. Journal of Computational Physics, 2007, 227:1510-1522
[6] Deng W H, Li C P. Numerical schemes for fractional ordinary differential equations. Numerical Modelling, 2012, (16):355-374
[7] Varsha D G, Babakhani A. Analysis of a system of fractional differential equations. J. Math. Anal. Appl., 2004, 293:511-522
[8] Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl., 1996, 204:609-625
[9] Diethelm K, Ford N J. Analysis of fractional differential equations. J. Math. Anal. Appl., 2002, 265:229-248
[10] El-Sayed A M A. On the fractional differential equations. Appl. Math. Comput., 1992, 49:205-213
[11] Zhang S Q. Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Analysis, 2009, 71:2087-2093
[12] El-Sayed A M A. Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal., 1998, 33(2):181-186
[13] Yu C, Gao G Z. Some results on a class of fractional functional differential equations. Commun. Appl. Nonlinear Anal., 2004, 11(3):67-75
[14] Jack Hale. Theory of Functional Differential Equations. New York:Springer-Verlag, 1997
[15] Zhang X Y. Some results of linear fractional order time-delay system. Appl. Math. Comput., 2008, 197:407-411
[16] Zhou Y, Jiao F, Li J. Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Analysis, 2009, 71:3249-3256
[17] Agarwal R P, Zhou Y, He Y Y. Existence of fractional neutral functional differential equations. Computers and Mathematics with Applications, 2010, 59:1095-1100
[18] Deng W H. Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal., 2010, 72:1768-1777
[19] Deng W H, Li C P, Lü J H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn., 2007, 48:409-416
[20] Wang J R, Lv L L, Zhou Y. New concepts and results in stability of fractional differential equations. Commun Nonlinear Sci. Numer. Simulat., 2012, 17:2530-2538
[21] Li C P, Zhang F R. A survey on the stability of fractional differential equations. Eur. Phys. J. Special Topics, 2011, 193:27-47
[22] Li Y, Chen Y, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45:1965-1969
[23] Li Y, Chen Y, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl., 2010, 59:1810-1821
[24] Liu S Y, Wang G T, Zhang L H. Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Letters, 2013, 26(12):1120-1124
[25] Jankowski T. Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative. Appl. Math. Comput., 2013, 219(14):7772-7776
[26] Rezaei H, Jung S M, Rassias T M. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl., 2013, 403:244-251
[27] Yu X L, Wang J R, Zhang Y. On the β-Ulam-Hyers-Rassias stability of nonautonomous impulsive evolution equations. J. Appl. Math. Comput., 2015, 48(1):461-475
[28] Kuang J X, Cong Y H. Stability of numerical methods for delay differential equations. Beijing:Science press, 2005
[29] Yang S P, Xiao A G. Cubic spline collocation method for fractional differential equations. Journal of Applied Mathematics, 2013(2013), Article ID 864025, 20 pages

[1]杨明华. 齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性[J]. 应用数学学报, 2016, 39(5): 748-761.
[2]李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52.
[3]钟金金, 李文学, 王克, 张春梅. 用多个Lyapunov函数证明随机Volterra积分方程的渐近稳定性[J]. 应用数学学报(英文版), 2014, 37(1): 59-68.
[4]阿不都克热木·阿吉, 白丽克孜·玉努斯. 一类可修复计算机系统的定性分析[J]. 应用数学学报(英文版), 2012, (6): 1003-1017.
[5]陈远强, 许弘雷. 脉冲控制系统的渐近稳定性分析[J]. 应用数学学报(英文版), 2010, 33(3): 479-489.
[6]邓义华. 一类中立型延迟积分微分方程线性θ-方法的渐近稳定性[J]. 应用数学学报(英文版), 2010, 33(3): 524-531.
[7]彭世国, 朱思铭. 一类无穷时滞微分系统的周期解和全局渐近稳定性[J]. 应用数学学报(英文版), 2004, 27(3): 416-422.
[8]Li Qiang JIANG, Zhi En MA, S. Rionero, F. Petrillo. 一类含分布时滞革新传播模型的稳定性[J]. 应用数学学报(英文版), 2003, 26(4): 682-692.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14208
相关话题/应用数学 分数 统计 控制 数学系