摘要本文讨论了一类分数阶线性中立型延迟微分方程初值问题的解渐近稳定的充分必要条件.另外,本文还设计了数值求解这类分数阶中立型延迟微分方程初值问题的Hermite三次样条配置方法,并获得了局部截断误差结果.数值结果也验证了本文的理论结果. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2014-12-24 | | 基金资助:国家自然科学基金(11501238,11401248);广东省自然科学基金(2016A030313119,2015A030310410);惠州学院自然科学基金(hzuxl201420)资助项目.
|
[1] | Uchaikin V V, Sibatov R T. Fractional theory for transport in disordered semiconductors. Commun. Nonlinear Sci. Numer. Simul., 2008, 13(4):715-727 | [2] | Tarasov V E, Zaslavsky G M. Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul., 2006, 11(8):885-898 | [3] | Weilbeer, M. Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background. Technical University of Braunschweig, Braun-schweig, 2005 | [4] | Podlubny, I. Fractional Differential Equations. New York:Academic Press, 1999 | [5] | Deng, W.H. Numerical algorithm for the time fractional Fokker-Planck equation. Journal of Computational Physics, 2007, 227:1510-1522 | [6] | Deng W H, Li C P. Numerical schemes for fractional ordinary differential equations. Numerical Modelling, 2012, (16):355-374 | [7] | Varsha D G, Babakhani A. Analysis of a system of fractional differential equations. J. Math. Anal. Appl., 2004, 293:511-522 | [8] | Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl., 1996, 204:609-625 | [9] | Diethelm K, Ford N J. Analysis of fractional differential equations. J. Math. Anal. Appl., 2002, 265:229-248 | [10] | El-Sayed A M A. On the fractional differential equations. Appl. Math. Comput., 1992, 49:205-213 | [11] | Zhang S Q. Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Analysis, 2009, 71:2087-2093 | [12] | El-Sayed A M A. Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal., 1998, 33(2):181-186 | [13] | Yu C, Gao G Z. Some results on a class of fractional functional differential equations. Commun. Appl. Nonlinear Anal., 2004, 11(3):67-75 | [14] | Jack Hale. Theory of Functional Differential Equations. New York:Springer-Verlag, 1997 | [15] | Zhang X Y. Some results of linear fractional order time-delay system. Appl. Math. Comput., 2008, 197:407-411 | [16] | Zhou Y, Jiao F, Li J. Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Analysis, 2009, 71:3249-3256 | [17] | Agarwal R P, Zhou Y, He Y Y. Existence of fractional neutral functional differential equations. Computers and Mathematics with Applications, 2010, 59:1095-1100 | [18] | Deng W H. Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal., 2010, 72:1768-1777 | [19] | Deng W H, Li C P, Lü J H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn., 2007, 48:409-416 | [20] | Wang J R, Lv L L, Zhou Y. New concepts and results in stability of fractional differential equations. Commun Nonlinear Sci. Numer. Simulat., 2012, 17:2530-2538 | [21] | Li C P, Zhang F R. A survey on the stability of fractional differential equations. Eur. Phys. J. Special Topics, 2011, 193:27-47 | [22] | Li Y, Chen Y, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45:1965-1969 | [23] | Li Y, Chen Y, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl., 2010, 59:1810-1821 | [24] | Liu S Y, Wang G T, Zhang L H. Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Letters, 2013, 26(12):1120-1124 | [25] | Jankowski T. Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative. Appl. Math. Comput., 2013, 219(14):7772-7776 | [26] | Rezaei H, Jung S M, Rassias T M. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl., 2013, 403:244-251 | [27] | Yu X L, Wang J R, Zhang Y. On the β-Ulam-Hyers-Rassias stability of nonautonomous impulsive evolution equations. J. Appl. Math. Comput., 2015, 48(1):461-475 | [28] | Kuang J X, Cong Y H. Stability of numerical methods for delay differential equations. Beijing:Science press, 2005 | [29] | Yang S P, Xiao A G. Cubic spline collocation method for fractional differential equations. Journal of Applied Mathematics, 2013(2013), Article ID 864025, 20 pages |
[1] | 杨明华. 齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性[J]. 应用数学学报, 2016, 39(5): 748-761. | [2] | 李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37-52. | [3] | 钟金金, 李文学, 王克, 张春梅. 用多个Lyapunov函数证明随机Volterra积分方程的渐近稳定性[J]. 应用数学学报(英文版), 2014, 37(1): 59-68. | [4] | 阿不都克热木·阿吉, 白丽克孜·玉努斯. 一类可修复计算机系统的定性分析[J]. 应用数学学报(英文版), 2012, (6): 1003-1017. | [5] | 陈远强, 许弘雷. 脉冲控制系统的渐近稳定性分析[J]. 应用数学学报(英文版), 2010, 33(3): 479-489. | [6] | 邓义华. 一类中立型延迟积分微分方程线性θ-方法的渐近稳定性[J]. 应用数学学报(英文版), 2010, 33(3): 524-531. | [7] | 彭世国, 朱思铭. 一类无穷时滞微分系统的周期解和全局渐近稳定性[J]. 应用数学学报(英文版), 2004, 27(3): 416-422. | [8] | Li Qiang JIANG, Zhi En MA, S. Rionero, F. Petrillo. 一类含分布时滞革新传播模型的稳定性[J]. 应用数学学报(英文版), 2003, 26(4): 682-692. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14208
一类带p-Laplacian算子分数阶微分方程边值问题的正解田元生,李小平湘南学院数学与金融学院,郴州423000PositiveSolutionsforBoundaryValueProblemofFractionDifferentialEquationswithp-LaplacianOperato ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类分数阶微分方程积分边值问题的可解性李耀红,张海燕宿州学院数学与统计学院,宿州234000SolvabilityforIntegralBoundaryValueProblemofaClassofFractionalOrderDifferentialEquationLIYaohong,ZHANGHa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27正则多部竞赛图的控制图李瑞娟,刘冬婷山西大学数学科学学院,太原030006TheDominationGraphofaRegularMultipartiteTournamentLIRuijuan,LIUDongtingSchoolofMathematicalSciences,ShanxiUnivers ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶力学系统的正则变换理论张毅苏州科技大学土木工程学院,苏州215011TheiryofCanonicalTransformationforaFractionalMechanicalSystemZHANGYiCollegeofCivilEngineering,SuzhouUniversityofS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具反馈控制的单方不能独立生存合作系统稳定性研究周晓燕1,普丽琼2,薛亚龙3,谢向东31.福州职业技术学院公共基础部,福州350108;2.福州大学数学与计算机科学学院,福州350108;3.宁德师范学院数学系,宁德352100OntheStabilityPropertyofanObligateLot ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27变分同伦摄动迭代法求解抛物型方程反问题中的控制参数白伟1,郭士民21.宁夏师范学院数学与计算机科学学院,宁夏756000;2.西安交通大学数学与统计学院,西安710049VariationalHomotopyPerturbationIterationMethodforComputingaContro ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27水体富营养化状态脉冲控制系统周期解的存在性和唯一性孙树林,段晓祥山西师范大学数学与计算机科学学院,临汾041000ExistenceandUniquenessofPeriodicSolutionofaState-dependentImpulsiveControlSystemonWaterEutrop ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27田洪乔,张志信,蒋威安徽大学数学科学学院,合肥230601出版日期:2021-11-25发布日期:2021-12-25Finite-TimeStabilizationofFractionalOrderSingularDifferentialSystemswithDelayTIANHongqiao,Z ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27马盼盼1,2,于金鹏1,2,刘加朋1,2,赵林1,2,于海生1,21.青岛大学自动化学院,青岛266071;2.山东省工业控制重点实验室,青岛266071出版日期:2021-11-25发布日期:2021-12-25StochasticFinite-TimeFuzzyAdaptiveControlfo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27项莹,陈奇远浙江财经大学数据科学学院,杭州310018出版日期:2021-10-25发布日期:2021-12-24MeasurementofthePharmaceuticalManufacturingIndustry'sParticipationintheGlobalandDomesticValue ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|