删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类带p-Laplacian算子分数阶微分方程边值问题的正解

本站小编 Free考研考试/2021-12-27

一类带p-Laplacian算子分数阶微分方程边值问题的正解 田元生, 李小平湘南学院数学与金融学院, 郴州 423000 Positive Solutions for Boundary Value Problem of Fraction Differential Equations with p-Laplacian Operator TIAN Yuansheng, LI XiaopingCollege of Mathematics and Finance, Xiangnan University, Chenzhou, Hunan 432000, China
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(288 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文应用凸锥上的不动点定理, 讨论了一类带p-Laplacian算子分数阶微分方程边值问题的正解的存在性, 分别得到了这类边值问题至少存在一个正解和多个正解的充分条件. 最后, 给出了两个具体的例子.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-08-30
PACS:O175.8
基金资助:湖南省重点建设学科,湖南省自然科学基金(2015JJ6101)项目资助.
引用本文:
田元生, 李小平. 一类带p-Laplacian算子分数阶微分方程边值问题的正解[J]. 应用数学学报, 2016, 39(4): 481-494. TIAN Yuansheng, LI Xiaoping. Positive Solutions for Boundary Value Problem of Fraction Differential Equations with p-Laplacian Operator. Acta Mathematicae Applicatae Sinica, 2016, 39(4): 481-494.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I4/481


[1] Benchohra M, Henderson J, Ntouyas S K. Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl., 2008, 338: 1340-1350 (2008)
[2] Lin W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl., 2007, 332: 709-726
[3] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006
[4] N'Guerekata G M. A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlinear Anal., 2009, 70: 1873-1876 (2009)
[5] Podlubny I. Fractional Differential Equations. Academic Press, San Diego, 1999
[6] Vasundhara J, Lakshmikantham V. Nonsmooth analysis and fractional differential equations. Nonlinear Anal., 2009, 70: 4151-4157
[7] Salem H A H. On the nonlinear Hammerstein integral equations in Banach spaces and application to the boundary value problem of fractional order. Math. Comp. Mode., 2009, 70: 1873-1876
[8] Salem H A H. On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies. J. Comp. Appl. Math., 2009, 224: 567-572
[9] Su X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett., 2009, 22: 64-69
[10] Tian Y, Bai Z. Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comp. Math. Appl., 2010, 59: 2601-2609
[11] Tian Y, Chen A. The existence of positive solution to three-point singular boundary value problem of fractional differential equation. Abst. Appl. Anal., Vol.2009, Article ID 314656, 18 pages, 2009
[12] Tian, Y. Positive solutions to m-point boundary value problem of fractional differential equation. Acta Math. Appl. Sinica (English Series), 2013, 29: 661-672
[13] Wang Y, Liu L, Wu Y. Positive solutions for a class of fractional boundary problem with changing sign nonlinearity. Nonlinear Anal., 2011, 74: 6434-6441
[14] Zhou Y, Tian Y, He Y. Floquet Boundary Value Problem of fractional differential equation. Electron. J. Qualitative Theory Diff. Equ., 2010, 50: 1-13
[15] Feng H, Pang H, Ge W. Multiplicity of symmetric Positive solutions for a multipoint boundary problem with a one-dimensional p-Laplacian. Nonlinear Anal., 2008, 69: 3050-3059
[16] Su H, Wei Z, Wang B. The existence of positive solutions for a nonlinear four-point singular boundary value problem with a p-Laplacian operator. Nonlinear Anal., 2007, 66: 2204-2217
[17] Tian Y, Chen A, Ge W. Multiple positive solutions to multipoint one-dimensional p-Laplacian boundary value problem with impulsive effects. Czech. Math. Jour., 2011, 61: 127-144
[18] Wang Y, Hou C. Existence of multiple positive solutions for one dimensional p-Laplacian. J. Math. Anal. Appl., 2006, 315: 144-153
[19] Zhang, X., Ge, W. Impulsive boundary value problems involving the one-dimensional p-Laplacian. Nonlinear Anal., 2009, 70: 1692-1701
[20] Krasnosel'skii M A. Positive Solutions of Operator Equations. Noordhoff, Groningen, 1964
[21] Leggett R W, Williams L R. Multiple positive fixed points of nonliear operators on ordered Banach spaces. Indiana Univ. Math. J., 1979, 28: 673-688

[1]胡良根, 张怀念. 奇异Sturm-Liouville特征值问题正解的全局分歧和存在性[J]. 应用数学学报, 2016, 39(5): 677-688.
[2]王忠, 张鹏军, 曹玉峰. 边界条件中带有谱参数且在多个点不连续的Sturm-Liouville算子的特征问题[J]. 应用数学学报, 2016, 39(4): 505-522.
[3]李耀红, 张海燕. 一类分数阶微分方程积分边值问题的可解性[J]. 应用数学学报, 2016, 39(4): 547-554.
[4]沈文国. 四阶边值问题单侧全局分岐和结点解[J]. 应用数学学报, 2016, 39(3): 463-472.
[5]张申贵, 刘华. 一类分数阶基尔霍夫型方程解的多重性[J]. 应用数学学报, 2016, 39(3): 473-480.
[6]邱崇, 王承富. 一类与椭圆型边值问题相关的重排优化问题[J]. 应用数学学报, 2015, 38(6): 976-986.
[7]王金华, 向红军. 无穷分数差分方程三点边值问题[J]. 应用数学学报, 2015, 38(6): 1029-1039.
[8]樊自安. 包含次临界和临界Sobolev指数的椭圆方程组解的存在性[J]. 应用数学学报, 2015, 38(5): 834-844.
[9]韩祥临, 石兰芳, 许永红, 莫嘉琪. 分数阶双参数奇摄动非线性微分方程的渐近解[J]. 应用数学学报, 2015, 38(4): 721-729.
[10]张立新. 一类含积分边界条件的分数阶微分方程的正解的存在性[J]. 应用数学学报, 2015, 38(3): 423-433.
[11]陈静. 一类带渐近二次非线性项的分数阶Dirichlet边值问题解的存在性[J]. 应用数学学报, 2015, 38(1): 53-66.
[12]梁海华, 王根强. 一类带非负系数矩阵的非线性代数系统的正解的存在性[J]. 应用数学学报, 2015, 38(1): 137-149.
[13]殷慰萍. 一类复蒙日-安培方程Dirichlet问题数值解探讨[J]. 应用数学学报(英文版), 2014, 37(5): 786-796.
[14]王峰, 崔玉军. 二阶隐式微分方程周期边值问题的正解[J]. 应用数学学报(英文版), 2014, 37(5): 946-955.
[15]高洁, 周玮. 一类非线性分数阶微分方程边值解的存在性和唯一性[J]. 应用数学学报(英文版), 2014, 37(3): 470-486.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14168
相关话题/应用数学 分数 统计 学报 系统