删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

变分同伦摄动迭代法求解抛物型方程反问题中的控制参数

本站小编 Free考研考试/2021-12-27

变分同伦摄动迭代法求解抛物型方程反问题中的控制参数 白伟1, 郭士民21. 宁夏师范学院数学与计算机科学学院, 宁夏 756000;
2. 西安交通大学数学与统计学院, 西安 710049 Variational Homotopy Perturbation Iteration Method for Computing a Control Parameter in an Inverse Parabolic Equation BAI Wei1, GUO ShiMin21. Department of Mathematics and Computer Sciences, Ningxia Normal University, Ningxia 756000;
2. School of Science, Xi'an Jiaotong University, Xi'an 710049
摘要
图/表
参考文献(0)
相关文章(11)
点击分布统计
下载分布统计
-->

全文: PDF(299 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要变分同伦摄动迭代法是结合变分迭代法和同伦摄动法而产生的新方法, 被应用于求解含有未知参数的线性抛物型方程反问题.通过该方法,可以快速得到收敛于反问题精确解的收敛序列. 本文通过一些实例,来验证说明该方法的高效性和可靠性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-04-29
PACS:O174.12
O173.1
基金资助:宁夏自然科学基金资助项目(NZ15258,NZ14271), 宁夏高等学校科学研究项目(NGY2015119,njg201422218), 宁夏师范学院信息技术工程研究中心资助项目.
引用本文:
白伟, 郭士民. 变分同伦摄动迭代法求解抛物型方程反问题中的控制参数[J]. 应用数学学报, 2016, 39(1): 1-11. BAI Wei, GUO ShiMin. Variational Homotopy Perturbation Iteration Method for Computing a Control Parameter in an Inverse Parabolic Equation. Acta Mathematicae Applicatae Sinica, 2016, 39(1): 1-11.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I1/1


[1] Liu Jinbo, Tang Jiang. Variational iteration method for solving an inverse parabolic equation. Physics Letters A, 2008, 372: 3569-3572
[2] Cannon J R, Yin H M. Numerical solution of some parabolic inverse problems. Numerical Methods for Partial Differential Equations, 1990, 2: 177-191
[3] Cannon J R,Lin Y,Wang S. Determination of source parameter in parabolic equations. Meccanica, 1992, 27: 85-94
[4] Cannon J R,Yin H M. On a class of nonlinear parabolic equations with nonlinear trace type functionals inverse problems. Inverse Problems, 1991, 7: 149-161
[5] Dehghan M. Determination of a control parameter in the two-dimensional diffusion equation. Applied Numerical Mathematics, 2001, 37: 489-502
[6] Dehghan M. Fourth-order techniques for identifying a control parameter in the parabolic equa-tions. International Journal of Engineering Science, 2002, 40: 433-447
[7] Dehghan M. Numerical solution of a non-local boundary value problem with Neumanns boundary conditions. Communications in Numerical Methods in Engineering, 2003, 19: 1-12
[8] He J H. Variational iteration method for delay differential equations. Communications in Non-linear Science, 1997, 2: 235-236
[9] He J H. Approximate solution of nonlinear differential equations with convolution product non-linearities. Computer Methods in Applied Mechanics and Engineering, 1998, 167: 69-73
[10] He J H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 1998, 167: 57-68
[11] He J H. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 1999, 178: 257-262
[12] He J H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-linear Mechanics, 2000, 35: 37-43
[13] He J H. Homotopy perturbation method: a new non-linear analytical technique. Applied Math-ematics and Computation, 2003, 135: 73-79
[14] He J H. Comparison of homotopy perturbation method and homotopy analysis method. Applied Mathematics and Computation, 2004, 15: 527-539
[15] He J H. The homotopy perturbation method for non-linear oscillators with discontinuities. Applied Mathematics and Computation, 2004, 151: 287-292
[16] He J H. Application of homotopy perturbation method to non-linear wave equations. Chaos, Soliton Fractals, 2005, 26: 695-700
[17] He J H. Homotopy perturbation method for bifurcation of non-linear problems. International Journal of Nonlinear Science and Numerical Simulation, 2005, 6: 207-208
[18] He J H. Periodic solutions and bifurcations of delay-differential equations. Physics Letters A, 2005, 347: 228-230
[19] Muhammad Aslam Noor, Syed Tauseef Mohyud-Din. Variational Homotopy Perturbation Method for Solving Higher Dimensional Initial Boundary Value Problems. Mathematical Problems in Engineering, Doi:10.1155/2008/696734
[20] Dehghan M. The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure. International Journal of Computer Mathematics, 2004, 81: 979-989
[21] Siddiqui A M, Hameed M, Siddiqui B M, Ghori Q K. Use of Adomian decomposition method in the study of parallel plate° ow of a third grade fluid. Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 2388-2399
[22] Luo Xingguo,Wu Qingbiao,Zhang Bingqquan. Revisit on partial solutions in the Adomian decomposition method: solving heat and wave equations. Journal of Mathematical Analysis and Applications,2006,321:353-363
[23] Dehghan M. Determination of a control function in three-dimensional parabolic equations. Math-ematics and Computers in Simulation, 2003, 61: 89-100
[24] Tamer A. Abassy,Magdy A. El-Tawil, H.El-Zoheiry. Modified variational iteration method for Boussinesq equation. Computers and Mathematics with Applications, 2007, 54: 955-965
[25] Mehdi Tatari, Mehdi Dehghan. Improvement of He's variational iteration method for solving systems of differential equations. Computers and Mathematics with Applications, 2009, 58: 2160-2166
[26] Asghar Ghorbani,Jafar Saberi-Nadjafi. Exact solutions for nonlinear integral equations by a modified homotopy perturbation method. Computers and Mathematics with Applications, 2008, 56: 1032-1039
[27] Zaid M Odibat. A new modification of the homotopy perturbation method for linear and non-linear operators. Applied Mathematics and Computation,2007,189:746-753
[28] Donald Ariel P. Extended homotopy perturbation method and computation of°ow past a stretch-ing sheet. Computers and Mathematics with Applications, 2009, 58: 2402-2409
[29] Muhammad Aslam Noor,Khalida Inayat Noor, Syed Tauseef Mohyud-Din. Modified variational iteration technique for solving singular fourth-order parabolic partial differential equations. Non-linear Analysis, 2009, 71: 630-640

[1]李功胜, 贾现正, 孙春龙, 杜殿虎. 对流弥散方程线性源项系数反演的变分伴随方法[J]. 应用数学学报, 2015, 38(6): 1001-1015.
[2]莫荣华, 黎稳. 反对称偏对称矩阵反问题的最小二乘解[J]. 应用数学学报(英文版), 2012, (2): 221-231.
[3]赵书芬, 张建元. 时滞脉冲抛物型微分方程解的存在性及其在种群动力学中的应用[J]. 应用数学学报(英文版), 2011, 34(6): 1068-1081.
[4]杨旻. 非线性抛物型方程组的二次有限体积元方法[J]. 应用数学学报(英文版), 2006, 29(1): 29-30.
[5]张志跃. 非线性抛物型方程组离散向量解的收敛性[J]. 应用数学学报(英文版), 2004, 27(3): 546-555.
[6]陈国旺, 吕胜关. 人口问题中广义三维GINZBURG-LANDAU模型方程[J]. 应用数学学报(英文版), 2000, 23(4): 507-517.
[7]王一夫, 伍卓群, 尹景学. 一类退化抛物型方程的周期解[J]. 应用数学学报(英文版), 2000, 16(2): 180-187.
[8]王一夫, 伍卓群, 尹景学. 一类退化抛物型方程的周期解[J]. 应用数学学报(英文版), 2000, 16(2): 180-187.
[9]刘继军. 一维介质双参数反演的适定性分析[J]. 应用数学学报(英文版), 1999, 22(4): 554-565.
[10]江成顺. 半无界空间上的拟线性抛物型方程解的Blow-up现象[J]. 应用数学学报(英文版), 1998, 21(1): 0-0.
[11]刘继军. 2.5维介质Born近似波速反演唯一性[J]. 应用数学学报(英文版), 1998, 21(1): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14078
相关话题/应用数学 宁夏 统计 控制 宁夏师范学院