摘要本文利用降阶法研究了空间四阶-时间分数阶扩散波方程的一个新的差分格式,用能量分析法证明了格式的无穷模稳定性和收敛性,并证明了格式的收敛阶为O,(τ3-α+h2).最后,数值实验验证了格式的精确度和有效性. |
[1] | Metzler R, Klafter J. The random walk's guide to anomalous diffusion:a fractional dynamics approach. Phys. Rep., 2000, 339:1-77 | [2] | Qi H, Jiang X. Solutions of the space-time fractional Cattaneo diffusion equation. Physica A, 2011, 390:1876-1883 | [3] | Chen G. Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures. Appl., 1979, 58:249-273 | [4] | Modje B, Montseny G. Boundary fractional derivative control of the wave equation. IEEE, Transcations on Automatic Control., 1995, 40:378-382 | [5] | MorgulÖ. Dynamic boundary control of a Euler-Bemouilli beam. IEEE Trans. Automat. Contr., 1992, 37:639-642 | [6] | Bagley R L, Calico R A. Fractional order state equation for the control of viscoelastically damped structures. J. Guidance, 1991, 14:304-311 | [7] | Oldhan K B, Spainer J. The fractional calculus. New York:Academic Press, 1974 | [8] | Sneddon I N. Fourier transforms. New York:McGraw Hill, 1951 | [9] | Leith J R. Fractal scaling of fractional diffusion processes. Signal Processing, 2003, 83:2397-2409 | [10] | Jafari H, Dehghan M, Sayevan K. Solving a fourth-order fractional diffusion wave equation in a bounded domain by decomposition method. Numer. Methods Partial Differen. Equat., 2008, 24:1115-1126 | [11] | Agrawal O P. A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calculus Appl. Anal., 2000, 3:1-12 | [12] | Agrawal O P. A general solution for the fourth-order fractional diffusion-wave equation defined in bounded domain. Comput. Struct., 2001, 79:1497-1501 | [13] | Hu X, Zhang L. A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Communi., 2011, 182:1645-1650 | [14] | Hu X, Zhang L. On finite difference methods for fourth-order fractional diffusion-wave and sudiffusion systems. Appl. Math. Comput., 2012, 218:5019-5034 | [15] | Gorenflo R, Mainardi F. Fractional calculus:integral and differential equations of fractional order. In:A. Carpinteri, F. Mainaridi (editors), Fractals and fractional calculus in continuum mechanics. New York:Springer, 1997, 223-276 | [16] | Chen C M, Liu F. Burrage K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput., 2008, 198:754-769 | [17] | Langlands T A M, Henry B I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys., 2005, 205:719-736 | [18] | Murio D A. Implicit finite difference approximation for time fractional diffusion equation. Comput. Math. Appl., 2008, 56:1138-1145 | [19] | Tadjeran C, Meerschaert M M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys., 2007, 220:813-823 | [20] | Tadjeran C, Meerschaert M M, Scheffler H P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys., 2006, 213:205-213 | [21] | Yuste S B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys., 2006, 216:264-274 | [22] | Zhang Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput., 2009, 215:524-529 | [23] | Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys., 2009, 228:7792-7804 | [24] | Sun Z Z, Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math., 2006, 56:193-209 | [25] | Du R, Cao W R, Sun Z Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model., 2010, 34:2998-3007 | [26] | Gao G, Sun Z Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys., 2011, 230:586-595 | [27] | Zhao X, Sun Z Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 2011, 230:6061-6074 | [28] | Zhang Y N, Sun Z Z. Alternating direction implicit schemes for the two-dimensional fractional subdiffusion equation. J. Comput. Phys., 2011, 239:8713-8728 | [29] | Chen C M, Liu F, Anh V. Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl. Math. Comput., 2008, 204:340-351 | [30] | Chen C M, Liu F, Anh V. A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math., 2009, 223:777-789 | [31] | Chen C M, Liu F, Anh V, Turner I W. Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Compu., 2011, 217:5729-5742 | [32] | Chen C M, Liu F, Turner I, Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys., 2007, 227:886-897 | [33] | Chen C M, Liu F, Turner I W, Anh V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid. Comput. Math. with Appl., 2011, 62:971-986 | [34] | Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys., 2009, 228:7792-7804 | [35] | Ilic M, Turner I W, Liu F, Anh V. Analytical and numerical solutions of a one-dimensional fractionalin-space diffusion equation in a composite medium. Appl. Math. Comput., 2010, 216:2248-2262 | [36] | Lin R, Liu F, Anh V, Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput., 2009, 212:435-445 | [37] | Liu F, Yang C, Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math., 2009, 231:160-176 | [38] | Zhuang P, Liu F, Anh V, Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46:1079-1095 | [39] | Zhuang P, Liu F, Anh V, Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process, IMA J. Appl. Math., 2009, 74:645-667 | [40] | 孙志忠, 偏微分方程数值解法(第二版). 北京:科学出版社, 2012(Sun Z Z. Numerical Methods for Paritial Differential equations (Second edition). Beijing:Science Press, 2012) | [41] | Wang T, Guo B. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math., 2009, 233:878-888 | [42] | Omrani K, Abidi F, Achouri T, Khiari N. A new conservative finite difference scheme for the Rosenau equation. Appl. Math. Comput., 2008, 201:35-43 | [43] | Liao H L, Sun Z Z. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differential Eq., 2010, 26:37-60 |
[1] | 孔丽丽, 李录苹. 具有不同时滞的两种捕食者-食饵恒化器模型的定性分析[J]. 应用数学学报, 2017, 40(5): 676-691. | [2] | 王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572. | [3] | 陈远强. 随机扰动神经网络的脉冲控制[J]. 应用数学学报, 2017, 40(1): 16-26. | [4] | 宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48. | [5] | 王丽娜, 杨益民, 赵烨. 一类推广的森林模型波前解的稳定性[J]. 应用数学学报, 2017, 40(1): 73-84. | [6] | 葛照强, 冯德兴. Banach空间中广义发展算子的一致指数稳定性[J]. 应用数学学报, 2016, 39(6): 811-822. | [7] | 李成林. 捕食者带有疾病的入侵反应扩散捕食系统的空间斑图[J]. 应用数学学报, 2016, 39(6): 832-846. | [8] | 谢溪庄. 具有季节交替Lotka-Volterra合作模型的全局稳定性[J]. 应用数学学报, 2016, 39(5): 701-708. | [9] | 杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733. | [10] | 杨明华. 齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性[J]. 应用数学学报, 2016, 39(5): 748-761. | [11] | 唐国吉, 汪星, 叶明露. 混合变分不等式的一个投影型方法[J]. 应用数学学报, 2016, 39(4): 574-585. | [12] | 谢溪庄, 陈梅香. 具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性[J]. 应用数学学报, 2016, 39(2): 213-222. | [13] | 马力, 王兢. 能量不等式和薛定谔流弱解的唯一性[J]. 应用数学学报, 2016, 39(2): 223-228. | [14] | 董晓亮, 何郁波. 一类满足充分下降条件和自适应共轭性的修正THREECG方法[J]. 应用数学学报, 2016, 39(1): 58-70. | [15] | 党艳霞, 蔡礼明, 李学志. 一类具有离散时滞的多菌株媒介传染病模型的竞争排斥[J]. 应用数学学报, 2016, 39(1): 100-120. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14347
局部凸空间中的广义增广对偶锥李飞1,杨玉红1,2,杨新民31.内蒙古大学数学科学学院,呼和浩特010021;2.长江师范学院数学与统计学院,重庆408100;3.重庆师范大学数学科学学院,重庆400047TheExtendedAugmentedDualConesinLocallyConvexSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27无穷维Hilbert空间中的多集分裂可行性问题张石生1,2,王刚1,李向荣3,陈志坚31.云南财经大学统计数学学院,昆明650221;2.中国医科大学通识教育中心,台中40402;3.香港理工大学应用数学系,香港Multiple-setSplitFeasibilityProbleminInfinit ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27-连通空间上弱-映射族的不动点,重合点和聚合不动点朴勇杰延边大学理学院数学系,延吉133002FixedPoints,CoincidencePointsandCollectivelyFixedPointsforWeak-Mapson-Connected ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类非线性分数阶微分方程多点积分边值问题解的存在性张福珍1,刘文斌2,王刚21.九州职业技术学院高等数学教研室,徐州221116;2.中国矿业大学数学学院,徐州221116ExistenceofSolutionsforNonlinearDifferentialEquationsofFractiona ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有一般复发现象的疾病模型的全局稳定性宋海涛1,刘胜强21.山西大学复杂系统研究所,太原030006;2.哈尔滨工业大学数学系,哈尔滨150001GlobalStabilityforDiseaseModelwithGeneralRelapsePhenomenonSONGHaitao1,LIUShen ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Hermite-Fejr插值在一重积分Wiener空间下的平均误差许贵桥,刘洋天津师范大学数学科学学院,天津300387TheAverageErrorsforHermite-FejrInterpolationonthe1-foldIntegratedWienerSpa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中广义发展算子的一致指数稳定性葛照强1,冯德兴21.西安交通大学应用数学系,西安710049;2.中国科学院数学与系统科学研究院,北京100190UniformlyExponentialStabilityofGeneralizedEvolutionOperatorinBanachSp ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带固定效应面板数据空间误差模型的分位回归估计戴晓文1,晏振2,田茂再1,3,41.中国人民大学应用统计科学研究中心,中国人民大学统计学院,北京100872;2.广西师范大学数学与统计学院,桂林541004;3.兰州财经大学统计学院,兰州730020;4.新疆财经大学统计与信息学院,乌鲁木齐83000 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27捕食者带有疾病的入侵反应扩散捕食系统的空间斑图李成林云南省红河州蒙自市红河学院数学学院,蒙自661199SpatiotemporalPatternFormationofanInvasion-diffusionPredator-preySystemwithDiseaseinthePredatorLIC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27磁微极流体方程组在临界Sobolev空间强解的存在性原保全1,马丽21.河南理工大学数学与信息科学学院,焦作454000;2.中国矿业大学银川学院,银川750000ExistenceofStrongSolutiontotheMagneto-micropolarFluidEquationsinCrit ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|