删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

空间四阶-时间分数阶扩散波方程的一个新的数值分析方法

本站小编 Free考研考试/2021-12-27

空间四阶-时间分数阶扩散波方程的一个新的数值分析方法 胡秀玲1, 张鲁明21. 江苏师范大学数学与统计学院, 徐州 221116;
2. 南京航空航天大学理学院, 南京 210016 A New Numerical Method for Fourth-order Fractional Diffusion-wave System HU Xiuling1, ZHANG Luming21. School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China;
2. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
摘要
图/表
参考文献(0)
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(3207 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用降阶法研究了空间四阶-时间分数阶扩散波方程的一个新的差分格式,用能量分析法证明了格式的无穷模稳定性和收敛性,并证明了格式的收敛阶为O,(τ3-α+h2).最后,数值实验验证了格式的精确度和有效性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2012-05-08
PACS:O241.82
基金资助:国家自然科学基金(11501262)资助项目.
引用本文:
胡秀玲, 张鲁明. 空间四阶-时间分数阶扩散波方程的一个新的数值分析方法[J]. 应用数学学报, 2017, 40(4): 543-561. HU Xiuling, ZHANG Luming. A New Numerical Method for Fourth-order Fractional Diffusion-wave System. Acta Mathematicae Applicatae Sinica, 2017, 40(4): 543-561.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I4/543


[1] Metzler R, Klafter J. The random walk's guide to anomalous diffusion:a fractional dynamics approach. Phys. Rep., 2000, 339:1-77
[2] Qi H, Jiang X. Solutions of the space-time fractional Cattaneo diffusion equation. Physica A, 2011, 390:1876-1883
[3] Chen G. Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures. Appl., 1979, 58:249-273
[4] Modje B, Montseny G. Boundary fractional derivative control of the wave equation. IEEE, Transcations on Automatic Control., 1995, 40:378-382
[5] MorgulÖ. Dynamic boundary control of a Euler-Bemouilli beam. IEEE Trans. Automat. Contr., 1992, 37:639-642
[6] Bagley R L, Calico R A. Fractional order state equation for the control of viscoelastically damped structures. J. Guidance, 1991, 14:304-311
[7] Oldhan K B, Spainer J. The fractional calculus. New York:Academic Press, 1974
[8] Sneddon I N. Fourier transforms. New York:McGraw Hill, 1951
[9] Leith J R. Fractal scaling of fractional diffusion processes. Signal Processing, 2003, 83:2397-2409
[10] Jafari H, Dehghan M, Sayevan K. Solving a fourth-order fractional diffusion wave equation in a bounded domain by decomposition method. Numer. Methods Partial Differen. Equat., 2008, 24:1115-1126
[11] Agrawal O P. A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calculus Appl. Anal., 2000, 3:1-12
[12] Agrawal O P. A general solution for the fourth-order fractional diffusion-wave equation defined in bounded domain. Comput. Struct., 2001, 79:1497-1501
[13] Hu X, Zhang L. A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Communi., 2011, 182:1645-1650
[14] Hu X, Zhang L. On finite difference methods for fourth-order fractional diffusion-wave and sudiffusion systems. Appl. Math. Comput., 2012, 218:5019-5034
[15] Gorenflo R, Mainardi F. Fractional calculus:integral and differential equations of fractional order. In:A. Carpinteri, F. Mainaridi (editors), Fractals and fractional calculus in continuum mechanics. New York:Springer, 1997, 223-276
[16] Chen C M, Liu F. Burrage K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput., 2008, 198:754-769
[17] Langlands T A M, Henry B I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys., 2005, 205:719-736
[18] Murio D A. Implicit finite difference approximation for time fractional diffusion equation. Comput. Math. Appl., 2008, 56:1138-1145
[19] Tadjeran C, Meerschaert M M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys., 2007, 220:813-823
[20] Tadjeran C, Meerschaert M M, Scheffler H P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys., 2006, 213:205-213
[21] Yuste S B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys., 2006, 216:264-274
[22] Zhang Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput., 2009, 215:524-529
[23] Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys., 2009, 228:7792-7804
[24] Sun Z Z, Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math., 2006, 56:193-209
[25] Du R, Cao W R, Sun Z Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model., 2010, 34:2998-3007
[26] Gao G, Sun Z Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys., 2011, 230:586-595
[27] Zhao X, Sun Z Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 2011, 230:6061-6074
[28] Zhang Y N, Sun Z Z. Alternating direction implicit schemes for the two-dimensional fractional subdiffusion equation. J. Comput. Phys., 2011, 239:8713-8728
[29] Chen C M, Liu F, Anh V. Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl. Math. Comput., 2008, 204:340-351
[30] Chen C M, Liu F, Anh V. A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math., 2009, 223:777-789
[31] Chen C M, Liu F, Anh V, Turner I W. Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Compu., 2011, 217:5729-5742
[32] Chen C M, Liu F, Turner I, Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys., 2007, 227:886-897
[33] Chen C M, Liu F, Turner I W, Anh V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid. Comput. Math. with Appl., 2011, 62:971-986
[34] Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys., 2009, 228:7792-7804
[35] Ilic M, Turner I W, Liu F, Anh V. Analytical and numerical solutions of a one-dimensional fractionalin-space diffusion equation in a composite medium. Appl. Math. Comput., 2010, 216:2248-2262
[36] Lin R, Liu F, Anh V, Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput., 2009, 212:435-445
[37] Liu F, Yang C, Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math., 2009, 231:160-176
[38] Zhuang P, Liu F, Anh V, Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46:1079-1095
[39] Zhuang P, Liu F, Anh V, Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process, IMA J. Appl. Math., 2009, 74:645-667
[40] 孙志忠, 偏微分方程数值解法(第二版). 北京:科学出版社, 2012(Sun Z Z. Numerical Methods for Paritial Differential equations (Second edition). Beijing:Science Press, 2012)
[41] Wang T, Guo B. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math., 2009, 233:878-888
[42] Omrani K, Abidi F, Achouri T, Khiari N. A new conservative finite difference scheme for the Rosenau equation. Appl. Math. Comput., 2008, 201:35-43
[43] Liao H L, Sun Z Z. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differential Eq., 2010, 26:37-60

[1]孔丽丽, 李录苹. 具有不同时滞的两种捕食者-食饵恒化器模型的定性分析[J]. 应用数学学报, 2017, 40(5): 676-691.
[2]王能发. 有限理性下不确定性博弈均衡的稳定性[J]. 应用数学学报, 2017, 40(4): 562-572.
[3]陈远强. 随机扰动神经网络的脉冲控制[J]. 应用数学学报, 2017, 40(1): 16-26.
[4]宋海涛, 刘胜强. 具有一般复发现象的疾病模型的全局稳定性[J]. 应用数学学报, 2017, 40(1): 37-48.
[5]王丽娜, 杨益民, 赵烨. 一类推广的森林模型波前解的稳定性[J]. 应用数学学报, 2017, 40(1): 73-84.
[6]葛照强, 冯德兴. Banach空间中广义发展算子的一致指数稳定性[J]. 应用数学学报, 2016, 39(6): 811-822.
[7]李成林. 捕食者带有疾病的入侵反应扩散捕食系统的空间斑图[J]. 应用数学学报, 2016, 39(6): 832-846.
[8]谢溪庄. 具有季节交替Lotka-Volterra合作模型的全局稳定性[J]. 应用数学学报, 2016, 39(5): 701-708.
[9]杨水平. 一类分数阶中立型延迟微分方程的渐近稳定性[J]. 应用数学学报, 2016, 39(5): 719-733.
[10]杨明华. 齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性[J]. 应用数学学报, 2016, 39(5): 748-761.
[11]唐国吉, 汪星, 叶明露. 混合变分不等式的一个投影型方法[J]. 应用数学学报, 2016, 39(4): 574-585.
[12]谢溪庄, 陈梅香. 具有分布时滞和非局部空间效应的Gilpin-Ayala竞争模型的稳定性[J]. 应用数学学报, 2016, 39(2): 213-222.
[13]马力, 王兢. 能量不等式和薛定谔流弱解的唯一性[J]. 应用数学学报, 2016, 39(2): 223-228.
[14]董晓亮, 何郁波. 一类满足充分下降条件和自适应共轭性的修正THREECG方法[J]. 应用数学学报, 2016, 39(1): 58-70.
[15]党艳霞, 蔡礼明, 李学志. 一类具有离散时滞的多菌株媒介传染病模型的竞争排斥[J]. 应用数学学报, 2016, 39(1): 100-120.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14347
相关话题/应用数学 空间 分数 疾病 统计