删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

局部凸空间中的广义增广对偶锥

本站小编 Free考研考试/2021-12-27

局部凸空间中的广义增广对偶锥 李飞1, 杨玉红1,2, 杨新民31. 内蒙古大学数学科学学院, 呼和浩特 010021;
2. 长江师范学院数学与统计学院, 重庆 408100;
3. 重庆师范大学数学科学学院, 重庆 400047 The Extended Augmented Dual Cones in Locally Convex Spaces LI Fei1, YANG Yuhong1,2, YANG Xinmin31. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China;
2. School of Mathematics and Statistics, Yangtze Normal University, Chongqing 408100, China;
3. School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China
摘要
图/表
参考文献(0)
相关文章(9)
点击分布统计
下载分布统计
-->

全文: PDF(288 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要将赋范线性空间中增广对偶锥的概念推广到局部凸空间中,在两种情形下分别给出了广义增广对偶锥的定义.然后讨论了它们的主要性质,并在合适的假设下建立了广义增广对偶锥非平凡的存在性条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2015-11-23
PACS:O221.6
基金资助:国家自然科学基金(11271391,11431004,11601248)以及重庆市科委(cstc2014pt-sy00001)资助项目.
引用本文:
李飞, 杨玉红, 杨新民. 局部凸空间中的广义增广对偶锥[J]. 应用数学学报, 2017, 40(3): 368-376. LI Fei, YANG Yuhong, YANG Xinmin. The Extended Augmented Dual Cones in Locally Convex Spaces. Acta Mathematicae Applicatae Sinica, 2017, 40(3): 368-376.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I3/368


[1] ILLÉS T, KASSAY G. Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. Journal of Optimization Theory and Applications, 1999, 101(2):243-257
[2] Yang X M, Yang X Q, Chen G Y. Theorems of the alternative and optimization with set-valued maps. Journal of Optimization Theory and Applications, 2000, 107(3):627-640
[3] Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions. Journal of Optimization Theory and Applications, 2001, 110(2):413-427
[4] Ansari Q H, Yao J C editors. Recent Developments in Vector Optimization. Berlin:Springer, 2012
[5] Kasimbeyli R. A nonlinear cone separation theorem and scalarization in nonconvex vector optimization. SIAM J. Optimization, 2010, 20(3):1591-1619
[6] Zheng X Y. Proper efficiency in locally convex topological vector spaces. Journal of Optimization Theory and Applications, 1997, 94(2):469-486
[7] Cheng Y H, Fu W T. Strong efficiency in a locally convex space. Mathematical Methods of Operations Research, 1999, 50(1):373-384
[8] Qiu J H. Superefficiency in local convex spaces. Journal of Optimization Theory and Applications, 2007, 135(1):19-35
[9] Qiu J H, Hao Y. Scalarization of Henig properly efficient points in locally convex spaces. Journal of Optimization Theory and Applications, 2010, 147(1):71-92
[10] Qiu J H. Dual characterization and scalarization for Benson proper efficiency. SIAM J. Optimization, 2008, 19(1):144-162
[11] Eichfelder G. Variable Ordering Structures in Vector Optimization. Berlin:Springer, 2014
[12] Göpfert A, Riahi H, Tammer C, Zǎlinescu C. Variational Methods in Partially Ordered Spaces. New York:Springer, 2003
[13] Isac G, Bahya A O. Full nuclear cones associated to a normal cone. application to Pareto efficiency. Applied Mathematics Letters, 2002, 15(5):633-639
[14] Qiu J H. On solidness of polar cones. Journal of Optimization Theory and Applications, 2001, 109(1):199-214
[15] Han Z Q. Remarks on the angle property and solid cones. Journal of Optimization Theory and Applications, 1994, 82(1):149-157
[16] Borwein J. Proper efficient points for maximizations with respect to cones. SIAM J. Control and Optimization, 1977, 15(1):57-63

[1]徐义红, 彭振华. 一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用[J]. 应用数学学报, 2017, 40(2): 204-217.
[2]徐义红, 张爱红. 二元集值函数ε-严有效元的鞍点刻画[J]. 应用数学学报, 2016, 39(2): 184-199.
[3]赵克全, 夏远梅. 凸锥的一个广义内部性质[J]. 应用数学学报, 2016, 39(2): 289-297.
[4]徐义红, 张霞. 关于《集值优化问题Henig真有效解的最优性条件》一文的注记[J]. 应用数学学报, 2016, 39(1): 94-99.
[5]王定畅, 仇秋生. 集值优化问题广义拟近似解的性质与存在性定理[J]. 应用数学学报, 2015, 38(5): 929-943.
[6]韩有攀, 李文敏, 李乃成. 集值优化问题Henig真有效解的最优性条件[J]. 应用数学学报(英文版), 2014, 37(1): 13-21.
[7]张亚琴. 自反Banach空间中向量优化问题弱有效解集特性的进一步研究[J]. 应用数学学报(英文版), 2011, 34(1): 102-112.
[8]傅俊义, 王三华. 集值映射的对称向量拟均衡问题[J]. 应用数学学报(英文版), 2011, 34(1): 40-49.
[9]江孝感, 黄琦炜. E凸条件下多目标规划的Mond-Weir型对偶研究[J]. 应用数学学报(英文版), 2010, 33(4): 583-589.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14332
相关话题/应用数学 空间 优化 数学 统计